Advanced Search
Volume 43 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
Fangzheng LIU, Zhenzhong HAN, Ruiqi ZENG. Damaged Radar Signal Reconstruction Method Based on Variational Mode Decomposition and Compressed Sensing[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1644-1652. doi: 10.11999/JEIT200219
Citation: Fangzheng LIU, Zhenzhong HAN, Ruiqi ZENG. Damaged Radar Signal Reconstruction Method Based on Variational Mode Decomposition and Compressed Sensing[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1644-1652. doi: 10.11999/JEIT200219

Damaged Radar Signal Reconstruction Method Based on Variational Mode Decomposition and Compressed Sensing

doi: 10.11999/JEIT200219
  • Received Date: 2020-03-27
  • Rev Recd Date: 2021-01-30
  • Available Online: 2021-03-17
  • Publish Date: 2021-06-18
  • In view of the problem of data damage in faint radar signals, a radar signal reconstruction method is proposed based on Variational Mode Decomposition and Compressed Sensing (VMD-CS). Firstly, Variational Mode Decomposition is used to degrade and denoise the collected data. Secondly, the observation matrix and sparse representation matrix are constructed by compressed sensing method. Then the sparse representation vector is reconstructed based on the Orthogonal Matching Pursuit (OMP) algorithm. On this basis, the discrete cosine transform is utilized to reconstruct the damaged radar signal. The simulation experiments are carried out on the actual collect Linear Frequency Modulation (LFM) radar signal in two cases of continuous data loss and random data loss. The experimental results show that, the proposed method can well reconstruct the radar signal and approach the original signal accurately in time domain, frequency domain and instantaneous frequency when the continuous data loss rate does not exceed 30% or the random data loss date does not exceed 60%.
  • loading
  • [1]
    OSKOOI B, JULAYUSEFI M, and GOUDARZI A. GPR noise reduction based on wavelet thresholdings[J]. Arabian Journal of Geosciences, 2015, 8(5): 2937–2951. doi: 10.1007/s12517-014-1339-5
    [2]
    YANG Gongliu, LIU Yuanyuan, WANG Yanyong, et al. EMD interval thresholding denoising based on similarity measure to select relevant modes[J]. Signal Processing, 2015, 109: 95–109. doi: 10.1016/j.sigpro.2014.10.038
    [3]
    戴前伟, 吴铠均, 张彬. 短时傅里叶变换在GPR数据解释中的应用[J]. 物探与化探, 2016, 40(6): 1227–1231.

    DAI Qianwei, WU Kaijun, and ZHANG Bin. A study of application of short-time Fourier transform to GPR data interpretation[J]. Geophysical and Geochemical Exploration, 2016, 40(6): 1227–1231.
    [4]
    ZHOU Zhirong, HUA Dengxin, WANG Yufeng, et al. Improvement of the signal to noise ratio of Lidar echo signal based on wavelet de-noising technique[J]. Optics and Lasers in Engineering, 2013, 51(8): 961–966. doi: 10.1016/j.optlaseng.2013.02.011
    [5]
    AN Xueli and YANG Junjie. Denoising of hydropower unit vibration signal based on variational mode decomposition and approximate entropy[J]. Transactions of the Institute of Measurement and Control, 2016, 38(3): 282–292. doi: 10.1177/0142331215592064
    [6]
    DRAGOMIRETSKIY K and ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531–544. doi: 10.1109/TSP.2013.2288675
    [7]
    LIU Wei, CAO Siyuan, and WANG Zhiming. Retracted: Application of variational mode decomposition to seismic random noise reduction[J]. Journal of Geophysics and Engineering, 2017, 14(4): 888–899.
    [8]
    徐帆, 常建华, 刘秉刚, 等. 基于VMD的激光雷达回波信号去噪方法研究[J]. 激光与红外, 2018, 48(11): 1443–1448.

    XU Fan, CHANG Jianhua, LIU Binggang, et al. De-noising method research for Lidar echo signal based on variational mode decomposition[J]. Laser &Infrared, 2018, 48(11): 1443–1448.
    [9]
    WANG Yanxue, MARKERT R, XIANG Jiawei, et al. Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system[J]. Mechanical Systems and Signal Processing, 2015, 60/61: 243–251. doi: 10.1016/j.ymssp.2015.02.020
    [10]
    许军才, 任青文, 黄临平. 基于变分模态分解的探地雷达信号分析方法[J]. 河海大学学报: 自然科学版, 2018, 46(6): 545–550.

    XU Juncai, REN Qingwen, and HUANG Linping. GPR signal analysis method based on variational mode decomposition[J]. Journal of Hohai University:Natural Sciences, 2018, 46(6): 545–550.
    [11]
    王晶. 基于变分模态分解的信号去噪方法研究[D]. [硕士论文], 辽宁师范大学, 2018.

    WANG Jing. Research on signal method based on variational modal decomposition[D]. [Master dissertation], Liaoning Normal University, 2018.
    [12]
    龚忠毅. 基于子带自适应稀疏表示的图像压缩感知重构[D]. [硕士论文], 中南民族大学, 2018.

    GONG Zhongyi. Image compression sensing reconstruction based on subband adaptive sparse representation[D]. [Master dissertation], South-Central Minzu University, 2018.
    [13]
    齐林, 邢家柱, 陈俊鑫, 等. 基于压缩感知的心电信号稀疏采样与重构算法[J]. 东北大学学报: 自然科学版, 2019, 40(8): 1087–1092, 1098.

    QI Lin, XING Jiazhu, CHEN Junxin, et al. Sparse sampling and reconstruction algorithm of electrocardiogram signal in compressed sensing[J]. Journal of Northeastern University:Natural Science, 2019, 40(8): 1087–1092, 1098.
    [14]
    雷励. 压缩感知MIMO雷达波形设计[D]. [硕士论文], 深圳大学, 2018.

    LEI Li. Compressed sensing MIMO radar waveform optimization[D]. [Master dissertation], Shenzhen University, 2018.
    [15]
    蒋莹, 王冰切, 韩俊, 等. 基于分布式压缩感知的宽带欠定信号DOA估计[J]. 电子与信息学报, 2019, 41(7): 1690–1697. doi: 10.11999/JEIT180723

    JIANG Ying, WANG Bingqie, HAN Jun, et al. Underdetermined wideband DOA estimation based on distributed compressive sensing[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1690–1697. doi: 10.11999/JEIT180723
    [16]
    张新鹏, 胡茑庆, 程哲, 等. 基于压缩感知的振动数据修复方法[J]. 物理学报, 2014, 63(20): 200506. doi: 10.7498/aps.63.200506

    ZHANG Xinpeng, HU Niaoqing, CHENG Zhe, et al. Vibration data recovery based on compressed sensing[J]. Acta Physica Sinica, 2014, 63(20): 200506. doi: 10.7498/aps.63.200506
    [17]
    田引黎, 杨林华, 张鹏嵩, 等. 基于半张量积压缩感知的形变数据重构在航天器结构健康监测中的应用[J]. 航天器环境工程, 2019, 36(2): 134–138.

    TIAN Yinli, YANG Linhua, ZHANG Pengsong, et al. Deformation data reconstruction based on semi-tensor compressed sensing in structural health monitoring of spacecraft[J]. Spacecraft Environment Engineering, 2019, 36(2): 134–138.
    [18]
    钟蕾, 范冲. 基于压缩感知的航空影像超分辨率重建[J]. 测绘与空间地理信息, 2019, 42(7): 49–52.

    ZHONG Lei and FAN Chong. Super resolution reconstruction of aerial images based on compressed sensing[J]. Geomatics &Spatial Information Technology, 2019, 42(7): 49–52.
    [19]
    孙延鹏. 超宽带雷达的压缩感知成像重建技术研究[D]. [博士论文], 东北大学, 2017.

    SUN Yanpeng. Ultra wideband radar image reconstruction technique based on compressed sensing[D]. [Ph. D dissertation], Northeastern University, 2017.
    [20]
    王锋, 孙桂玲, 张健平, 等. 基于压缩感知的加速前向后向匹配追踪算法[J]. 电子与信息学报, 2016, 38(10): 2538–2545. doi: 10.11999/JEIT151422

    WANG Feng, SUN Guiling, ZHANG Jianping, et al. Acceleration forward-backward pursuit algorithm based on compressed sensing[J]. Journal of Electronics &Information Technology, 2016, 38(10): 2538–2545. doi: 10.11999/JEIT151422
    [21]
    BARANIUK R G. Compressive sensing [lecture notes][J]. IEEE Signal Processing Magazine, 2007, 24(4): 118–121. doi: 10.1109/MSP.2007.4286571
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (874) PDF downloads(92) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return