| Citation: | Jingjing MA, Jin XU. A Method for the Graph Vertex Coloring Problem Based on DNA Origami[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1750-1755. doi: 10.11999/JEIT200203 | 
 
	                | [1] | FEYNMAN R P. There’s plenty of Room at the Bottom[M]. GILBERT D H. Minaturization. New York: Reinhold Publishing Corporation, 1961: 282–296. | 
| [2] | ADLEMAN L M. Molecular computation of solutions to combinatorial problems[J]. Science, 1994, 266(5187): 1021–1024. doi:  10.1126/science.7973651 | 
| [3] | BRAICH R S, CHELYAPOV N, JOHNSON C, et al. Solution of a 20-variable 3-SAT problem on a DNA computer[J]. Science, 2002, 296(5567): 499–502. doi:  10.1126/science.1069528 | 
| [4] | BENENSON Y, PAZ-ELIZUR T, ADAR R, et al. Programmable and autonomous computing machine made of biomolecules[J]. Nature, 2001, 414(6862): 430–434. doi:  10.1038/35106533 | 
| [5] | LIU Qinghua, WANG Liman, FRUTOS A G, et al. DNA computing on surfaces[J]. Nature, 2000, 403(6766): 175–179. doi:  10.1038/35003155 | 
| [6] | SAKAMOTO K, GOUZU H, KOMIYA K, et al. Molecular computation by DNA hairpin formation[J]. Science, 2000, 288(5469): 1223–1226. doi:  10.1126/science.288.5469.1223 | 
| [7] | HEAD T, ROZENBERG G, BLADERGROEN R S, et al. Computing with DNA by operating on plasmids[J]. Biosystems, 2000, 57(2): 87–93. doi:  10.1016/S0303-2647(00)00091-5 | 
| [8] | JONOSKA N, KARL S A, and SAITO M. Three dimensional DNA structures in computing[J]. Biosystems, 1999, 52(1/3): 143–153. doi:  10.1016/S0303-2647(99)00041-6 | 
| [9] | ADLEMAN L, CHENG QI, GOEL A, et al. Running time and program size for self-assembled squares[C]. ACM Symposium on Theory of Computing (STOC), New York, USA, 2001. 740–748. doi: 10.1145/380752.380881. | 
| [10] | MARTIN-VIDE C, PĂUN G, and SALOMAA A. Characterizations of recursively enumerable languages by means of insertion grammars[J]. Theoretical Computer Science, 1998, 205(1/2): 195–205. doi:  10.1016/S0304-3975(97)00079-0 | 
| [11] | LIPTON R J. DNA solution of hard computational problems[J]. Science, 1995, 268(5210): 542–545. doi:  10.1126/science.7725098 | 
| [12] | ROTHEMUND P. A DNA and restriction enzyme implementation of Turing machines[C]. Proceedings of the DIMACS Workshop, Princeton, USA, 1995. | 
| [13] | OGIHARA M and RAY A. Simulating Boolean circuits on a DNA computer[J]. Algorithmica, 1999, 25(2/3): 239–250. doi:  10.1007/PL00008276 | 
| [14] | BENENSON Y, GIL B, BEN-DOR U et al. An autonomous molecular computer for logical control of gene expression[J]. Nature, 2004, 429(6990): 423–429. doi:  10.1038/nature02551 | 
| [15] | XU Jin. Probe machine[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(7): 1405–1416. doi:  10.1109/TNNLS.2016.2555845 | 
| [16] | WINFREE E, LIU Furong, WENZLER L A, et al. Design and self-assembly of two-dimensional DNA crystals[J]. Nature, 1998, 394(6693): 539–544. doi:  10.1038/28998 | 
| [17] | YAN Hao, PARK S H, FINKELSTEIN G et al. DNA-templated self-assembly of protein arrays and highly conductive nanowires[J]. Science, 2003, 301(5641): 1882–1884. doi:  10.1126/science.1089389 | 
| [18] | ROTHEMUND P W K. Folding DNA to create nanoscale shapes and patterns[J]. Nature, 2006, 440(7082): 297–302. doi:  10.1038/nature04586 | 
| [19] | HAN Dongran, PAL S, NANGREAVE J, et al. DNA origami with complex curvatures in Three-Dimensional space[J]. Science, 2011, 332(6027): 342–346. doi:  10.1126/science.1202998 | 
| [20] | ISHIKAWA D, SUZUKI Y, KUROKAWA C, et al. DNA origami Nanoplate-based emulsion with Nanopore function[J]. Angewandte Chemie-International Edition, 2019, 58(43): 15299–15303. doi:  10.1002/anie.201908392 | 
| [21] | JOURNOT C M A, RAMAKRISHNA V, WALLACE M I, et al. Modifying membrane morphology and interactions with DNA origami clathrin-mimic networks[J]. ACS Nano, 2019, 13(9): 9973–9979. doi:  10.1021/acsnano.8b07734 | 
| [22] | LI Na, SHANG Yingxu, XU Rui et al. Precise organization of metal and metal Oxide Nanoclusters into arbitrary patterns on DNA origami[J]. Journal of the American Chemical Society, 2019, 141(45): 17968–17972. doi:  10.1021/jacs.9b09308 | 
| [23] | JOHNSON J A, DEHANKAR A, WINTER J O, et al. Reciprocal control of hierarchical DNA origami-Nanoparticle assemblies[J]. NANO Letters, 2019, 19(12): 8469–8475. doi:  10.1021/acs.nanolett.9b02786 | 
| [24] | KLEIN W P, THOMSEN R P, TURNER K B, et al. Enhanced catalysis from multienzyme cascades assembled on a DNA origami triangle[J]. ACS Nano, 2019, 13(12): 13677–13689. doi:  10.1021/acsnano.9b05746 | 
| [25] | BERENGUT J F, BERENGUT J C, DOYE J P K, et al. Design and synthesis of pleated DNA origami nanotubes with adjustable diameters[J]. Nucleic Acids Research, 2019, 47(22): 11963–11975. doi:  10.1093/nar/gkz1056 | 
| [26] | HAHN J, CHOU L Y T, SØRENSEN R S, et al. Extrusion of RNA from a DNA-origami-based Nanofactory[J]. ACS Nano, 2020, 14(2): 1550–1559. doi:  10.1021/acsnano.9b06466 | 
| [27] | ANASTASSACOS F M, ZHAO Zhao, ZENG Yang, et al. Glutaraldehyde cross-linking of Oligolysines coating DNA origami greatly reduces susceptibility to nuclease degradation[J]. Journal of the American Chemical Society, 2020, 142(7): 3311–3315. doi:  10.1021/jacs.9b11698 | 
| [28] | BARTNIK K, BARTH A, PILO-PAIS M, et al. A DNA origami platform for single-pair Förster resonance energy transfer investigation of DNA-DNA interactions and ligation[J]. Journal of the American Chemical Society, 2020, 142(2): 815–825. doi:  10.1021/jacs.9b09093 | 
| [29] | 殷志祥, 唐震, 张强, 等. 基于DNA折纸基底的与非门计算模型[J]. 电子与信息学报, 2020, 42(6): 1355–1364. doi:  10.11999/JEIT190825 YIN Zhixiang, TANG Zhen, ZHANG Qiang, et al. NAND gate computational model based on the DNA origami template[J]. Journal of Electronics &Information Technology, 2020, 42(6): 1355–1364. doi:  10.11999/JEIT190825 | 
| [30] | 王君珂, 印珏, 牛人杰, 等. DNA计算与DNA纳米技术[J]. 电子与信息学报, 2020, 42(6): 1313–1325. doi:  10.11999/JEIT190826 WANG Junke, YIN Jue, NIU Renjie, et al. DNA computing and DNA Nanotechnology[J]. Journal of Electronics &Information Technology, 2020, 42(6): 1313–1325. doi:  10.11999/JEIT190826 | 
| [31] | XU Jin, QIANG Xiaoli, ZHANG Kai, et al. A DNA computing model for the Graph Vertex Coloring problem based on a probe graph[J]. Engineering, 2018, 4(1): 61–77. doi:  10.1016/j.eng.2018.02.011 | 
