Advanced Search
Volume 43 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
Hongwei WANG, Pengyu DONG, You CHEN, Yipeng ZHOU, Bingsong XIAO. Recognition Method of Radar Signal Based on the Energy Cumulant of Choi-Williams Distribution and Improved Semi-supervised Naïve Bayes[J]. Journal of Electronics & Information Technology, 2021, 43(3): 589-597. doi: 10.11999/JEIT200127
Citation: Hongwei WANG, Pengyu DONG, You CHEN, Yipeng ZHOU, Bingsong XIAO. Recognition Method of Radar Signal Based on the Energy Cumulant of Choi-Williams Distribution and Improved Semi-supervised Naïve Bayes[J]. Journal of Electronics & Information Technology, 2021, 43(3): 589-597. doi: 10.11999/JEIT200127

Recognition Method of Radar Signal Based on the Energy Cumulant of Choi-Williams Distribution and Improved Semi-supervised Naïve Bayes

doi: 10.11999/JEIT200127
Funds:  Aeronautical Science Foundation (20175596020)
  • Received Date: 2020-02-26
  • Rev Recd Date: 2020-09-30
  • Available Online: 2020-10-12
  • Publish Date: 2021-03-22
  • In order to solve incomplete prior information of radar in non-cooperative electronic countermeasure environment, a novel recognition algorithm named ISNB (Improved Semi-supervised Naïve Bayes) based on the energy cumulant of Choi-Williams Distribution(CWD) is put forward. This algorithm extracts the energy cumulant of Choi-Williams distribution of radar signals as the recognition feature. The energy cumulant of CWD is attained by calculating the accumulations of each frequency sample value with the different time samples. Before this procedure, CWD is processed by base noise reduction. Considering disadvantages of traditional Semi-supervised Naïve Bayes(SNB) which comes from repeated errors in updating sample sets, it uses ISNB to construct classifier, and then completes the recognition of tested sample sets. ISNB selects those samples with high degree of confidence which comes from generated confidence. Theoretical analysis and simulation results show that the proposed method is about 3% higher than the traditional SNB algorithm. Under the same signal-to-noise ratio, this algorithm has higher classification recognition rate and better classification performance than the traditional principal component analysis plus support vector machine.
  • loading
  • ZHOU Zhiwen, HUANG Gaoming, CHEN Haiyang, et al. Automatic radar waveform recognition based on deep convolutional denoising auto-encoders[J]. Circuits, Systems, and Signal Processing, 2018, 37(9): 4034–4048. doi: 10.1007/s00034-018-0757-0
    黄颖坤, 金炜东, 葛鹏, 等. 基于多尺度信息熵的雷达辐射源信号识别[J]. 电子与信息学报, 2019, 41(5): 1084–1091. doi: 10.11999/JEIT180535

    HUANG Yingkun, JIN Weidong, GE Peng, et al. Radar emitter signal identification based on multi-scale information entropy[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1084–1091. doi: 10.11999/JEIT180535
    YANG Zhutian, WU Zhilu, YIN Zhendong, et al. Hybrid radar emitter recognition based on rough k-means classifier and relevance vector machine[J]. Sensors, 2013, 13(1): 848–864. doi: 10.3390/s130100848
    RU Xiaohu, LIU Zheng, JIANG Wenli, et al. Recognition performance analysis of instantaneous phase and its transformed features for radar emitter identification[J]. IET Radar, Sonar & Navigation, 2016, 10(5): 945–952. doi: 10.1049/iet-rsn.2014.0512
    陈锡明, 祝正威, 卢显良. 新型雷达辐射源识别专家系统的研究与实现[J]. 系统工程与电子技术, 2000, 22(8): 58–62. doi: 10.3321/j.issn:1001-506X.2000.08.017

    CHEN Ximing, ZHU Zhengwei, and LU Xianliang. Research and implementation on a new radar radiating-source recognizing expert system[J]. Systems Engineering and Electronics, 2000, 22(8): 58–62. doi: 10.3321/j.issn:1001-506X.2000.08.017
    张葛祥, 胡来招, 金炜东. 基于熵特征的雷达辐射源信号识别[J]. 电波科学学报, 2005, 20(4): 440–445. doi: 10.3969/j.issn.1005-0388.2005.04.006

    ZHANG Gexiang, HU Laizhao, and JIN Weidong. Radar emitter signal recognition based on entropy features[J]. Chinese Journal of Radio Science, 2005, 20(4): 440–445. doi: 10.3969/j.issn.1005-0388.2005.04.006
    王彩云, 黄盼盼, 李晓飞, 等. 基于AEPSO-SVM算法的雷达HRRP目标识别[J]. 系统工程与电子技术, 2019, 41(9): 1984–1989. doi: 10.3969/j.issn.1001-506X.2019.09.10

    WANG Caiyun, HUANG Panpan, LI Xiaofei, et al. Radar HRRP target recognition based on AEPSO-SVM algorithm[J]. Systems Engineering and Electronics, 2019, 41(9): 1984–1989. doi: 10.3969/j.issn.1001-506X.2019.09.10
    胡国兵, 徐立中, 徐淑芳, 等. 基于能量聚焦效率检验的信号脉内调制识别[J]. 通信学报, 2013, 34(6): 136–145. doi: 10.3969/j.issn.1000-436x.2013.06.017

    HU Guobing, XU Lizhong, XU Shufang, et al. Intrapulse modulation recognition of signals based on statistical test of energy focusing efficiency[J]. Journal on Communications, 2013, 34(6): 136–145. doi: 10.3969/j.issn.1000-436x.2013.06.017
    王磊, 史亚, 姬红兵. 基于多集典型相关分析的雷达辐射源指纹识别[J]. 西安电子科技大学学报: 自然科学版, 2013, 40(2): 164–171. doi: 10.3969/j.issn.1001-2400.2013.02.027

    WANG Lei, SHI Ya, JI Hongbing. Specific radar emitter identification using multiset canonical correlation analysis[J]. Journal of Xidian University, 2013, 40(2): 164–171. doi: 10.3969/j.issn.1001-2400.2013.02.027
    白航, 赵拥军, 胡德秀. 时频图像局部二值模式特征在雷达信号分类识别中的应用[J]. 宇航学报, 2013, 34(1): 139–146. doi: 10.3873/j.issn.1000-1328.2013.01.020

    BAI Hang, ZHAO Yongjun, and HU Dexiu. Radar signal recognition based on the local binary pattern feature of time-frequency image[J]. Journal of Astronautics, 2013, 34(1): 139–146. doi: 10.3873/j.issn.1000-1328.2013.01.020
    孟凡杰, 唐宏, 王义哲. 基于多特征融合的雷达辐射源信号识别[J]. 计算机仿真, 2016, 33(3): 18–22. doi: 10.3969/j.issn.1006-9348.2016.03.005

    MENG Fanjie, TANG Hong, and WANG Yizhe. Radar emitter signal recognition based on fusion of features[J]. Computer Simulation, 2016, 33(3): 18–22. doi: 10.3969/j.issn.1006-9348.2016.03.005
    LI Rong, WANG Huaning, CUI Yanmei, et al. Solar flare forecasting using learning vector quantity and unsupervised clustering techniques[J]. Science China Physics, Mechanics and Astronomy, 2011, 54(8): 1546–1552. doi: 10.1007/s11433-011-4391-0
    李序, 张葛祥, 荣海娜. 基于加权K-近邻法和SVC的雷达辐射源信号识别[J]. 系统工程与电子技术, 2010, 32(6): 1215–1219. doi: 10.3969/j.issn.1001-506X.2010.06.023

    LI Xu, ZHANG Gexiang, and RONG Haina. Radar emitter signal recognition based on weighted K-nearest neighbor and SVC[J]. Systems Engineering and Electronics, 2010, 32(6): 1215–1219. doi: 10.3969/j.issn.1001-506X.2010.06.023
    REN Minglun, DUAN Juanjuan, and YANG Shanlin. Decision models evaluation using fuzzy pattern recognition[C]. 2007 IEEE International Conference on Grey Systems and Intelligent Services, Nanjing, China, 2007: 1035–1039. doi: 10.1109/GSIS.2007.4443430.
    LIN Yun, XU Xiaochun, and WANG Zicheng. New individual identification method of radiation source signal based on entropy feature and SVM[J]. Journal of Harbin Institute of Technology, 2014, 21(1): 98–101. doi: 10.3969/j.issn.1005-9113.2014.01.014
    刘明骞, 孟燕, 张卫东. 雷达辐射源信号识别的效能综合评估方法[J]. 西安电子科技大学学报, 2019, 46(6): 1–8. doi: 10.19665/j.issn1001-2400.2019.06.001

    LIU Mingqian, MENG Yan, and ZHANG Weidong. Method for comprehensive evaluation of effectiveness of radar emitter signals recognition[J]. Journal of Xidian University, 2019, 46(6): 1–8. doi: 10.19665/j.issn1001-2400.2019.06.001
    杜兰, 魏迪, 李璐, 等. 基于半监督学习的SAR目标检测网络[J]. 电子与信息学报, 2020, 42(1): 154–163. doi: 10.11999/JEIT190783

    DU Lan, WEI Di, LI Lu, et al. SAR target detection network via semi-supervised learning[J]. Journal of Electronics &Information Technology, 2020, 42(1): 154–163. doi: 10.11999/JEIT190783
    FENG Zhipeng, LIANG Ming, and CHU Fulei. Recent advances in time-frequency analysis methods for machinery fault diagnosis: A review with application examples[J]. Mechanical Systems and Signal Processing, 2013, 38(1): 165–205. doi: 10.1016/j.ymssp.2013.01.017
    WANG Chao, WANG Jian, and ZHANG Xudong. Automatic radar waveform recognition based on time-frequency analysis and convolutional neural network[C]. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, USA, 2017. doi: 10.1109/ICASSP.2017.7952594.
    WANG Xuebao, HUANG Gaoming, ZHOU Zhiwen, et al. Radar emitter recognition based on the short time Fourier transform and convolutional neural networks[C]. The 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, Shanghai, China, 2017. doi: 10.1109/CISP-BMEI.2017.8302111.
    曾谁飞, 张笑燕, 杜晓峰, 等. 改进的朴素贝叶斯增量算法研究[J]. 通信学报, 2016, 37(10): 81–91.

    ZENG Shuifei, ZHANG Xiaoyan, DU Xiaofeng, et al. Improved incremental algorithm of Naive Bayes[J]. Journal on Communications, 2016, 37(10): 81–91.
    MANN G S and MCCALLUM A. Generalized expectation criteria for semi-supervised learning with weakly labeled data[J]. The Journal of Machine Learning Research, 2010, 11(2): 955–984.
    HALL M, FRANK E, HOLMES G, et al. The WEKA data mining software: An update[J]. ACM SIGKDD Explorations Newsletter, 2009, 11(1): 10–18. doi: 10.1145/1656274.1656278
    MODHA D S and SPANGLER W S. Feature weighting in k-means clustering[J]. Machine Learning, 2003, 52(3): 217–237. doi: 10.1023/A:1024016609528
    张锐戈, 谭永红. 双谱主成分分析的滚动轴承智能故障诊断[J]. 振动工程学报, 2014, 27(5): 763–769. doi: 10.3969/j.issn.1004-4523.2014.05.017

    ZHANG Ruige and TAN Yonghong. Intelligent fault diagnosis of rolling element bearings based on bispectrum principal components analysis[J]. Journal of Vibration Engineering, 2014, 27(5): 763–769. doi: 10.3969/j.issn.1004-4523.2014.05.017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (1414) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return