Advanced Search
Volume 42 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
Haixia ZHANG, Tiantian LI, Dongyang LI, Wenjie LIU. Research on Vehicle Behavior Analysis Based Technologies for Intelligent Vehicular Networks[J]. Journal of Electronics & Information Technology, 2020, 42(1): 36-49. doi: 10.11999/JEIT190820
Citation: Haixia ZHANG, Tiantian LI, Dongyang LI, Wenjie LIU. Research on Vehicle Behavior Analysis Based Technologies for Intelligent Vehicular Networks[J]. Journal of Electronics & Information Technology, 2020, 42(1): 36-49. doi: 10.11999/JEIT190820

Research on Vehicle Behavior Analysis Based Technologies for Intelligent Vehicular Networks

doi: 10.11999/JEIT190820
Funds:  The National Natural Science Foundation of China (61860206005)
  • Received Date: 2019-10-24
  • Rev Recd Date: 2019-12-01
  • Available Online: 2019-12-10
  • Publish Date: 2020-01-21
  • In vehicular networks, high mobility and complicated behaviors of vehicles fully manifest the uniqueness of characteristics of vehicular communications. In such a scenario, the data is generated in real-time, the traffic is distributed unevenly across the city and the communication patterns are revealed in various ways. All these characteristics make a fact that the traditional vehicular network deployment and resource management schemes can not satisfy the diverse quality of service requirements. Therefore, it is urgent to design intelligent heterogeneous vehicular networks with ubiquitous interconnection of "vehicle-person-road-cloud". How to make behavior prediction and assist the diversified and differentiated high-quality communication requirements in vehicular networks by using data analysis is still an open problem. This paper reviews the researches on vehicle behavior analysis, network deployment and access, and resource management, then focuses on the enabling technologies for intelligent vehicular networks. Firstly, by adopting advanced artificial intelligence and data analysis techniques, the spatial and temporal distribution characteristics of vehicle behaviors are explored, and general prediction models for these behaviors are then established. Based on the prediction models, efficient and intelligent network deployments, multiple network access schemes, as well as resource management schemes are completed, meeting the high-capacity and high-efficiency demands of future vehicular networks are designed.
  • loading
  • 唐琳琳, 邢敏, 徐群杰. 浅谈我国车联网的发展现状及未来挑战[J]. 内燃机与配件, 2018(23): 167–168. doi: 10.19475/j.cnki.issn1674-957x.2018.23.082

    TANG Linlin, XING Min, and XU Qunjie. Discussion on the development status and future challenges of Internet of vehicles in China[J]. Internal Combustion Engine &Parts, 2018(23): 167–168. doi: 10.19475/j.cnki.issn1674-957x.2018.23.082
    钱志华. 面向5G车联网连通性关键理论综述[J]. 信息通信, 2018(5): 219–220. doi: 10.3969/j.issn.1673-1131.2018.05.111

    QIAN Zhihua. A summary of key theories for 5G vehicle network connectivity[J]. Information &Communications, 2018(5): 219–220. doi: 10.3969/j.issn.1673-1131.2018.05.111
    顾文琰. 5G时代车联网发展的机遇与挑战[J]. 科技视界, 2019(19): 1–3. doi: 10.19694/j.cnki.issn2095-2457.2019.19.001

    GU Wenyan. Opportunities and challenges for the development of vehicle network in the 5G era[J]. Science &Technology Vision, 2019(19): 1–3. doi: 10.19694/j.cnki.issn2095-2457.2019.19.001
    ANDREWS J G, BUZZI S, CHOI W, et al. What will 5G be?[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(6): 1065–1082. doi: 10.1109/JSAC.2014.2328098
    QIU Tie, CHEN Ning, LI Keqiu, et al. Heterogeneous ad hoc networks: Architectures, advances and challenges[J]. Ad Hoc Networks, 2017, 55: 143–152. doi: 10.1016/j.adhoc.2016.11.001
    LI Rongpeng, ZHAO Zhifeng, ZHOU Xuan, et al. Intelligent 5G: When cellular networks meet artificial intelligence[J]. IEEE Wireless Communications, 2017, 24(5): 175–183. doi: 10.1109/MWC.2017.1600304WC
    DUAN Xiaoyu, LIU Yanan, and WANG Xianbin. SDN enabled 5G-VANET: Adaptive vehicle clustering and beamformed transmission for aggregated traffic[J]. IEEE Communications Magazine, 2017, 55(7): 120–127. doi: 10.1109/MCOM.2017.1601160
    LIU Tuo, ZHOU Sheng, and NIU Zhisheng. Joint optimization of cache allocation and content placement in urban vehicular networks[C]. 2018 IEEE Global Communications Conference, Abu Dhabi, United Arab Emirates, 2018: 1–6. doi: 10.1109/GLOCOM.2018.8647913.
    OZFATURA E and GÜNDÜZ D. Mobility and popularity-aware coded small-cell caching[J]. IEEE Communications Letters, 2018, 22(2): 288–291. doi: 10.1109/LCOMM.2017.2774799
    HOU Lu, LEI Lei, ZHENG Kan, et al. A Q-learning-based proactive caching strategy for non-safety related services in vehicular networks[J]. IEEE Internet of Things Journal, 2019, 6(3): 4512–4520. doi: 10.1109/JIOT.2018.2883762
    KHELIFI H, LUO Senlin, NOUR B, et al. An optimized proactive caching scheme based on mobility prediction for vehicular networks[C]. 2018 IEEE Global Communications Conference, Abu Dhabi, United Arab Emirates, 2018: 1–6. doi: 10.1109/GLOCOM.2018.8647898.
    MIN Wanli and WYNTER L. Real-time road traffic prediction with spatio-temporal correlations[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(4): 606–616. doi: 10.1016/j.trc.2010.10.002
    KUMAR S V and VANAJAKSHI L. Short-term traffic flow prediction using seasonal ARIMA model with limited input data[J]. European Transport Research Review, 2015, 7(3): 21. doi: 10.1007/s12544-015-0170-8
    KOESDWIADY A, SOUA R, and KARRAY F. Improving traffic flow prediction with weather information in connected cars: A deep learning approach[J]. IEEE Transactions on Vehicular Technology, 2016, 65(12): 9508–9517. doi: 10.1109/TVT.2016.2585575
    LV Yisheng, DUAN Yanjie, KANG Wenwen, et al. Traffic flow prediction with big data: A deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 865–873. doi: 10.1109/TITS.2014.2345663
    YANG Haofan, DILLON T S, and CHEN Y P P. Optimized structure of the traffic flow forecasting model with a deep learning approach[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2371–2381. doi: 10.1109/TNNLS.2016.2574840
    FOULADGAR M, PARCHAMI M, ELMASRI R, et al. Scalable deep traffic flow neural networks for urban traffic congestion prediction[C]. 2017 International Joint Conference on Neural Networks, Anchorage, USA, 2017: 2251–2258. doi: 10.1109/IJCNN.2017.7966128.
    POLSON N G and SOKOLOV V O. Deep learning for short-term traffic flow prediction[J]. Transportation Research Part C: Emerging Technologies, 2017, 79: 1–17. doi: 10.1016/j.trc.2017.02.024
    LI Rongpeng, ZHAO Zhifeng, ZHENG Jianchao, et al. The learning and prediction of application-level traffic data in cellular networks[J]. IEEE Transactions on Wireless Communications, 2017, 16(6): 3899–3912. doi: 10.1109/TWC.2017.2689772
    LEE D, ZHOU Sheng, ZHONG Xiaofeng, et al. Spatial modeling of the traffic density in cellular networks[J]. IEEE Wireless Communications, 2014, 21(1): 80–88. doi: 10.1109/MWC.2014.6757900
    QIU Chen, ZHANG Yanyan, FENG Zhiyong, et al. Spatio-temporal wireless traffic prediction with recurrent neural network[J]. IEEE Wireless Communications Letters, 2018, 7(4): 554–557. doi: 10.1109/LWC.2018.2795605
    ZHANG Chuanting, ZHANG Haixia, YUAN Dongfeng, et al. Citywide cellular traffic prediction based on densely connected convolutional neural networks[J]. IEEE Communications Letters, 2018, 22(8): 1656–1659. doi: 10.1109/LCOMM.2018.2841832
    ZHANG Chuanting, ZHANG Haixia, QIAO Jingping, et al. Deep transfer learning for intelligent cellular traffic prediction based on cross-domain big data[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(6): 1389–1401. doi: 10.1109/JSAC.2019.2904363
    CHEN Xiao and WANG Liangmin. A cloud-based trust management framework for vehicular social networks[J]. IEEE Access, 2017, 5: 2967–2980. doi: 10.1109/ACCESS.2017.2670024
    EIZA M H, NI Qiang, and SHI Qi. Secure and privacy-aware cloud-assisted video reporting service in 5G-enabled vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(10): 7868–7881. doi: 10.1109/TVT.2016.2541862
    YANG Qing, ZHU Binghai, and WU Shaoen. An architecture of cloud-assisted information dissemination in vehicular networks[J]. IEEE Access, 2016, 4: 2764–2770. doi: 10.1109/ACCESS.2016.2572206
    WISITPONGPHAN N, BAI Fan, MUDALIGE P, et al. Routing in sparse vehicular ad hoc wireless networks[J]. IEEE Journal on Selected Areas in Communications, 2007, 25(8): 1538–1556. doi: 10.1109/JSAC.2007.071005
    HUANG J J. Accurate probability distribution of rehealing delay in sparse VANETs[J]. IEEE Communications Letters, 2015, 19(7): 1193–1196. doi: 10.1109/LCOMM.2015.2426716
    HE Jianping, NI Yuanzhi, CAI Lin, et al. Optimal dropbox deployment algorithm for data dissemination in vehicular networks[J]. IEEE Transactions on Mobile Computing, 2018, 17(3): 632–645. doi: 10.1109/TMC.2017.2733534
    邱佳慧, 陈祎, 刘珊, 等. 车联网关键技术及演进方案研究[J]. 邮电设计技术, 2017(8): 29–34. doi: 10.12045/j.issn.1007-3043.2017.08.007

    QIU Jiahui, CHEN Yi, LIU Shan, et al. Research on key technologies and evolution strategies of IoV[J]. Designing Techniques of Posts and Telecommunications, 2017(8): 29–34. doi: 10.12045/j.issn.1007-3043.2017.08.007
    REIS A B, SARGENTO S, and TONGUZ O K. On the performance of sparse vehicular networks with road side units[C]. The 73rd IEEE Vehicular Technology Conference, Yokohama, Japan, 2011: 1–5. doi: 10.1109/vetecs.2011.5956724.
    REIS A B, SARGENTO S, NEVES F, et al. Deploying roadside units in sparse vehicular networks: What really works and what does not[J]. IEEE Transactions on Vehicular Technology, 2014, 63(6): 2794–2806. doi: 10.1109/tvt.2013.2292519
    CALVO J A L, TOKEL H A, and MATHAR R. Environment-based roadside unit deployment for urban scenarios[C]. The 27th IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, Valencia, Spain, 2016: 1–6. doi: 10.1109/pimrc.2016.7794889.
    PATRA M, THAKUR R, and MURTHY C S R. Improving delay and energy efficiency of vehicular networks using mobile femto access points[J]. IEEE Transactions on vehicular Technology, 2017, 66(2): 1496–1505. doi: 10.1109/tvt.2016.2563980
    KIM D, VELASCO Y, WANG Wei, et al. A new comprehensive RSU installation strategy for cost-efficient VANET deployment[J]. IEEE Transactions on Vehicular Technology, 2017, 66(5): 4200–4211. doi: 10.1109/tvt.2016.2598253
    LI Meng, SI Pengbo, and ZHANG Yanhua. Delay-tolerant data traffic to software-defined vehicular networks with mobile edge computing in smart city[J]. IEEE Transactions on Vehicular Technology, 2018, 67(10): 9073–9086. doi: 10.1109/tvt.2018.2865211
    CHEN Jieqiong, MAO Guoqiang, LI Changle, et al. Capacity of cooperative vehicular networks with infrastructure support: Multiuser case[J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 1546–1560. doi: 10.1109/tvt.2017.2753772
    DA SILVA C M and MEIRA W. Evaluating the performance of heterogeneous vehicular networks[C]. The 82nd IEEE Vehicular Technology Conference, Boston, USA, 2015: 1–5. doi: 10.1109/vtcfall.2015.7390936.
    Intelligent Transport Systems (ITS). Framework for public mobile networks in cooperative ITS (C-ITS)[R]. ETSI TR 102 962-2012, 2012.
    Intelligent Transport System (ITS). Vehicular communications; basic set of applications; definition[R]. ETSI TR 102 638 V1.1.1, 2009.
    ITS JPO. Vehicle safety applications[R]. 2008.
    ZHENG Kan, ZHENG Qiang, CHATZIMISIOS P, et al. Heterogeneous vehicular networking: A survey on architecture, challenges, and solutions[J]. IEEE Communications Surveys & Tutorials, 2015, 17(4): 2377–2396. doi: 10.1109/COMST.2015.2440103
    HAN Chong, DIANATI M, TAFAZOLLI R, et al. Analytical study of the IEEE 802.11p MAC sublayer in vehicular networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(2): 873–886. doi: 10.1109/TITS.2012.2183366
    KIHL M, BÜR K, MAHANTA P, et al. 3GPP LTE downlink scheduling strategies in vehicle-to-infrastructure communications for traffic safety applications[C]. 2012 IEEE Symposium on Computers and Communications, Cappadocia, Turkey, 2012: 448–453. doi: 10.1109/ISCC.2012.6249337.
    方箭, 冯大权, 段海军, 等. V2X通信研究概述[J]. 电信科学, 2019, 35(6): 102–112.

    FANG Jian, FENG Daquan, DUAN Haijun, et al. An overview of V2X communications[J]. Telecommunications Science, 2019, 35(6): 102–112.
    TIAN Daxin, ZHOU Jianshan, WANG Yunpeng, et al. A dynamic and self-adaptive network selection method for multimode communications in heterogeneous vehicular telematics[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(6): 3033–3049. doi: 10.1109/TITS.2015.2422144
    HUANG C M, CHIANG Mengshu, DAO D T, et al. V2V data offloading for cellular network based on the software defined network (SDN) inside mobile edge computing (MEC) architecture[J]. IEEE Access, 2018, 6: 17741–17755. doi: 10.1109/ACCESS.2018.2820679
    XIONG Kai, LENG Supeng, HU Jie, et al. Smart network slicing for vehicular fog-RANs[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3075–3085. doi: 10.1109/TVT.2019.2900234
    YAN Shi, ZHANG Xinran, XIANG Hongyu, et al. Joint access mode selection and spectrum allocation for fog computing based vehicular networks[J]. IEEE Access, 2019, 7: 17725–17735. doi: 10.1109/ACCESS.2019.2895626
    PIRMEZ L, CARVALHO JR J C, DELICATO F C, et al. SUTIL–Network selection based on utility function and integer linear programming[J]. Computer Networks, 2010, 54(13): 2117–2136. doi: 10.1016/j.comnet.2010.03.007
    TSENG L C, CHIEN F T, ZHANG Daqiang, et al. Network selection in cognitive heterogeneous networks using stochastic learning[J]. IEEE Communications Letters, 2013, 17(12): 2304–2307. doi: 10.1109/LCOMM.2013.102113.131876
    NIYATO D and HOSSAIN E. Dynamics of network selection in heterogeneous wireless networks: An evolutionary game approach[J]. IEEE Transactions on Vehicular Technology, 2009, 58(4): 2008–2017. doi: 10.1109/TVT.2008.2004588
    熊凯, 冷甦鹏, 张可, 等. 车联雾计算中的异构接入与资源分配算法研究[J]. 物联网学报, 2019, 3(2): 20–27.

    XIONG Kai, LENG Supeng, ZHANG Ke, et al. Research on heterogeneous radio access and resource allocation algorithm in vehicular fog computing[J]. Chinese Journal on Internet of Things, 2019, 3(2): 20–27.
    CHEN Shanzhi, HU Jinling, SHI Yan, et al. LTE-V: A TD-LTE-based V2X solution for future vehicular network[J]. IEEE Internet of Things Journal, 2016, 3(6): 997–1005. doi: 10.1109/JIOT.2016.2611605
    SUN Shaohui, HU Jinling, PENG Ying, et al. Support for vehicle-to-everything services based on LTE[J]. IEEE Wireless Communications, 2016, 23(3): 4–8. doi: 10.1109/MWC.2016.7498068
    PENG Haixia, LI Dazhou, YE Qiang, et al. Resource allocation for cellular-based inter-vehicle communications in autonomous multiplatoons[J]. IEEE Transactions on Vehicular Technology, 2017, 66(12): 11249–11263. doi: 10.1109/TVT.2017.2723430
    MEI Jie, ZHENG Kan, ZHAO Long, et al. A latency and reliability guaranteed resource allocation scheme for LTE V2V communication systems[J]. IEEE Transactions on Wireless Communications, 2018, 17(6): 3850–3860. doi: 10.1109/TWC.2018.2816942
    SHI Jianfeng, YANG Zhaohui, XU Hao, et al. Dynamic resource allocation for LTE-based vehicle-to-infrastructure networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 5017–5030. doi: 10.1109/TVT.2019.2903822
    LIANG Le, LI G Y, and XU Wei. Resource allocation for D2D-enabled vehicular communications[J]. IEEE Transactions on Communications, 2017, 65(7): 3186–3197. doi: 10.1109/TCOMM.2017.2699194
    刘自强, 任晨珊, 田辉. 用户行为驱动的自组织网络资源配置研究[J]. 中兴通讯技术, 2015, 21(1): 4–12, 28. doi: 10.3969/j.issn.1009-6868.2015.01.002

    LIU Ziqiang, REN Chenshan, and TIAN Hui. User-behavior-driven resource configuration in self-organizing networks[J]. ZTE Technology Journal, 2015, 21(1): 4–12, 28. doi: 10.3969/j.issn.1009-6868.2015.01.002
    WANG Shuo, ZHANG Xing, ZHANG Jiaxin, et al. An approach for spatial-temporal traffic modeling in mobile cellular networks[C]. The 27th International Teletraffic Congress, Ghent, Belgium, 2015: 203–209. doi: 10.1109/ITC.2015.31.
    LIN Chuncheng, DENG D J, and YAO C C. Resource allocation in vehicular cloud computing systems with heterogeneous vehicles and roadside units[J]. IEEE Internet of Things Journal, 2018, 5(5): 3692–3700. doi: 10.1109/JIOT.2017.2690961
    ZHENG Kan, MENG Hanlin, CHATZIMISIOS P, et al. An SMDP-based resource allocation in vehicular cloud computing systems[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7920–7928. doi: 10.1109/TIE.2015.2482119
    ZHANG Ke, MAO Yuming, LENG Supeng, et al. Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks[J]. IEEE Access, 2016, 4: 5896–5907. doi: 10.1109/ACCESS.2016.2597169
    YANG Chao, LIU Yi, CHEN Xin, et al. Efficient mobility-aware task offloading for vehicular edge computing networks[J]. IEEE Access, 2019, 7: 26652–26664. doi: 10.1109/ACCESS.2019.2900530
    HOU Xueshi, LI Yong, CHEN Min, et al. Vehicular fog computing: A viewpoint of vehicles as the infrastructures[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6): 3860–3873. doi: 10.1109/TVT.2016.2532863
    LIU Pengju, LI Junluo, and SUN Zhongwei. Matching-based task offloading for vehicular edge computing[J]. IEEE Access, 2019, 7: 27628–27640. doi: 10.1109/ACCESS.2019.2896000
    CUI Yaping, LIANG Yingjie, and WANG Ruyan. Resource allocation algorithm with multi-platform intelligent offloading in D2D-enabled vehicular networks[J]. IEEE Access, 2019, 7: 21246–21253. doi: 10.1109/ACCESS.2018.2882000
    ZHOU Zhenyu, YU Houjian, XU Chen, et al. BEGIN: Big data enabled energy-efficient vehicular edge computing[J]. IEEE Communications Magazine, 2018, 56(12): 82–89. doi: 10.1109/MCOM.2018.1700910
    ABDELHAMID S, HASSANEIN H S, and TAKAHARA G. On-road caching assistance for ubiquitous vehicle-based information services[J]. IEEE Transactions on Vehicular Technology, 2015, 64(12): 5477–5492. doi: 10.1109/TVT.2015.2480711
    ALNAGAR Y, HOSNY S, and EL-SHERIF A A. Towards mobility-aware proactive caching for vehicular Ad hoc networks[C]. 2019 IEEE Wireless Communications and Networking Conference Workshop, Marrakech, Morocco, 2019: 1–6. doi: 10.1109/WCNCW.2019.8902903.
    ZHAO Weicheng, QIN Yajuan, GAO Deyun, et al. An efficient cache strategy in information centric networking vehicle-to-vehicle scenario[J]. IEEE Access, 2017, 5: 12657–12667. doi: 10.1109/ACCESS.2017.2714191
    HUANG Wanying, SONG Tian, YANG Yating, et al. Cluster-based cooperative caching with mobility prediction in vehicular named data networking[J]. IEEE Access, 2019, 7: 23442–23458. doi: 10.1109/ACCESS.2019.2897747
    MA Junchao, WANG Jiahuan, LIU Gang, et al. Low latency caching placement policy for cloud-based VANET with both vehicle caches and RSU caches[C]. 2017 IEEE Globecom Workshops, Singapore, 2017: 1–6. doi: 10.1109/GLOCOMW.2017.8269203.
    DAI Yueyue, XU Du, MAHARJAN S, et al. Artificial intelligence empowered edge computing and caching for internet of vehicles[J]. IEEE Wireless Communications, 2019, 26(3): 12–18. doi: 10.1109/MWC.2019.1800411
    LIU Hui, CHEN Zhiyong, and QIAN Liang. The three primary colors of mobile systems[J]. IEEE Communications Magazine, 2016, 54(9): 15–21. doi: 10.1109/MCOM.2016.7565182
    WANG Jun, FENG Daquan, ZHANG Shengli, et al. Computation offloading for mobile edge computing enabled vehicular networks[J]. IEEE Access, 2019, 7: 62624–62632. doi: 10.1109/ACCESS.2019.2915959
    TAN L T and HU R Q. Mobility-aware edge caching and computing in vehicle networks: A deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 10190–10203. doi: 10.1109/TVT.2018.2867191
    HE Ying, ZHAO Nan, and YIN Hongxi. Integrated networking, caching, and computing for connected vehicles: A deep reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2018, 67(1): 44–55. doi: 10.1109/TVT.2017.2760281
    TAN L T, HU R Q, and HANZO L. Twin-timescale artificial intelligence aided mobility-aware edge caching and computing in vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3086–3099. doi: 10.1109/TVT.2019.2893898
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (2549) PDF downloads(449) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return