Citation: | Gang WANG, Ruofei ZHOU, Yikun ZOU. Research on Image Optimization Technology Based on Compressed Sensing[J]. Journal of Electronics & Information Technology, 2020, 42(1): 222-233. doi: 10.11999/JEIT190669 |
Compressed Sensing (CS) theory is one of the most active research fields in electronic information engineering. CS theory overcomes the limits dictated by Nyquist sampling theorem. Compared to the required minimum sampling quantity, CS proves that the original signal can be restored with high probability by fewer measurements, which saves the time cost of data acquisition and processing without losing information features. CS theory can essentially be regarded as a tool for dealing with linear signal recovery problems, so it has obvious advantages in solving inverse problems of signals and images. Image degradation is one of them, and the process of restoring high-quality images is image optimization. In order to promote the academic research and practical application of CS theory, the basic principle of CS is introduced. Based on the previous research, this paper studies on CS-based image optimization technology in three main aspects: denoising, deblurring and super resolution. Finally, the problems and challenges are discussed, and the current trends are analyzed to provide reference and help for future work.
BANHAM M R and KATSAGGELOS A K. Digital image restoration[J]. IEEE Signal Processing Magazine, 1997, 14(2): 24–41. doi: 10.1109/79.581363
|
JIANG Jielin, ZHANG Lei, and YANG Jian. Mixed noise removal by weighted encoding with sparse nonlocal regularization[J]. IEEE Transactions on Image Processing, 2014, 23(6): 2651–2662. doi: 10.1109/TIP.2014.2317985
|
RODRÍGUEZ P, ROJAS R, and WOHLBERG B. Mixed Gaussian-impulse noise image restoration via total variation[C]. 2012 IEEE International Conference on Acoustics, Speech and Signal Processing, Kyoto, Japan, 2012: 1077–1080. doi: 10.1109/ICASSP.2012.6288073.
|
ZHANG Jian, XIONG Ruiqin, ZHAO Chen, et al. Exploiting image local and nonlocal consistency for mixed Gaussian-impulse noise removal[C]. 2012 IEEE International Conference on Multimedia and Expo, Melbourne, Australia, 2012: 592–597. doi: 10.1109/ICME.2012.109.
|
CAI Jianfeng, CHAN R H, and NIKOLOVA M. Two-phase approach for deblurring images corrupted by impulse plus Gaussian noise[J]. Inverse Problems and Imaging, 2008, 2(2): 187–204. doi: 10.3934/ipi.2008.2.187
|
FERGUS R, SINGH B, HERTZMANN A, et al. Removing camera shake from a single photograph[J]. ACM Transactions on Graphics, 2006, 25(3): 787–794. doi: 10.1145/1141911.1141956
|
SHAN Qi, JIA Jiaya, and AGARWALA A. High-quality motion deblurring from a single image[J]. ACM Transactions on Graphics, 2008, 27(3): 73. doi: 10.1145/1360612.1360672
|
ZHENG Shicheng, XU Li, and JIA Jiaya. Forward motion deblurring[C]. 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 2013: 1465–1472. doi: 10.1109/ICCV.2013.185.
|
GLASNER D, BAGON S, and IRANI M. Super-resolution from a single image[C]. The 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 2009: 349–356. doi: 10.1109/ICCV.2009.5459271.
|
PARK S C, PARK M K, and KANG M G. Super-resolution image reconstruction: A technical overview[J]. IEEE Signal Processing Magazine, 2003, 20(3): 21–36. doi: 10.1109/MSP.2003.1203207
|
YANG Jianchao, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861–2873. doi: 10.1109/TIP.2010.2050625
|
CHEN Yongyong, GUO Yanwen, WANG Yongli, et al. Denoising of hyperspectral images using nonconvex low rank matrix approximation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(9): 5366–5380. doi: 10.1109/TGRS.2017.2706326
|
MANJÓN J V, CARBONELL-CABALLERO J, LULL J J, et al. MRI denoising using non-local means[J]. Medical Image Analysis, 2008, 12(4): 514–523. doi: 10.1016/j.media.2008.02.004
|
PENG Yigang, GANESH A, WRIGHT J, et al. RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2233–2246. doi: 10.1109/TPAMI.2011.282
|
WANG Naiyan and YEUNG D Y. Bayesian robust matrix factorization for image and video processing[C]. 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 2013: 1785–1792. doi: 10.1109/ICCV.2013.224.
|
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
|
CANDES E J, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489–509. doi: 10.1109/TIT.2005.862083
|
CANDES E J and TAO T. Near-optimal signal recovery from random projections: Universal encoding strategies?[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406–5425. doi: 10.1109/TIT.2006.885507
|
MALLAT S G. A Wavelet Tour of Signal Processing[M]. San Diego, USA: Academic Press, 1999: 263-376.
|
CANDÈS E J and DONOHO D L. Ridgelets: A key to higher-dimensional intermittency?[J]. Philosophical Transactions of the Royal Society B, 1999, 357(1760): 2495–2509. doi: 10.1098/rsta.1999.0444
|
CANDES E J and DONOHO D L. Curvelets, multiresolution representation, and scaling laws[J]. SPIE, 2000, 4119: 1–12. doi: 10.1117/12.408568.
|
DONOHO D L. Wedgelets: Nearly minimax estimation of edges[J]. The Annals of Statistics, 1999, 27(3): 859–897. doi: 10.1214/aos/1018031261
|
DO M N and VETTERLI M. The contourlet transform: An efficient directional multiresolution image representation[J]. IEEE Transactions on Image Processing, 2005, 14(12): 2091–2106. doi: 10.1109/TIP.2005.859376
|
PENNEC L E and MALLAT S. Bandelet representations for image compression[C]. The 2001 International Conference on Image Processing, Thessaloniki, Greece, 2001: 12. doi: 10.1109/ICIP.2001.958939.
|
ELAD M and AHARON M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing, 2006, 15(12): 3736–3745. doi: 10.1109/TIP.2006.881969
|
AHARON M, ELAD M, and BRUCKSTEIN A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311–4322. doi: 10.1109/TSP.2006.881199
|
CANDES E J and TAO T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203–4215. doi: 10.1109/TIT.2005.858979
|
CANDES E J and WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21–30. doi: 10.1109/MSP.2007.914731
|
CANDÈS E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 2008, 346(9/10): 589–592. doi: 10.1016/j.crma.2008.03.014
|
LIU Xinji, XIA Shutao, and DAI Tao. Deterministic constructions of binary measurement matrices with various sizes[C]. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, Brisbane, Australia, 2015: 3641–3645. doi: 10.1109/ICASSP.2015.7178650.
|
BRUCKSTEIN A M, DONOHO D L, and ELAD M. From sparse solutions of systems of equations to sparse modeling of signals and images[J]. SIAM Review, 2009, 51(1): 34–81. doi: 10.1137/060657704
|
TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666. doi: 10.1109/tit.2007.909108
|
RUDIN L I, OSHER S, and FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992, 60(1/4): 259–268. doi: 10.1016/0167-2789(92)90242-F
|
FRIEDMAN N and RUSSELL S. Image segmentation in video sequences: A probabilistic approach[C]. The 13th Conference on Uncertainty in Artificial Intelligence, Providence, USA, 1997: 175–181.
|
VETTERLI M and KOVACEVIC J. Wavelets and Subband Coding[M]. Englewood Cliffs, USA: Prentice Hall, 1995: 414–445.
|
DONOHO D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3): 613–627. doi: 10.1109/18.382009
|
DONOHO D L and JOHNSTONE J M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3): 425–455. doi: 10.1093/biomet/81.3.425
|
PORTILLA J, STRELA V, WAINWRIGHT M J, et al. Image denoising using scale mixtures of Gaussians in the wavelet domain[J]. IEEE Transactions on Image Processing, 2003, 12(11): 1338–1351. doi: 10.1109/TIP.2003.818640
|
DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080–2095. doi: 10.1109/TIP.2007.901238
|
SANTOS C A N, MARTINS D L N, and MASCARENHAS N D A. Ultrasound image despeckling using stochastic distance-based BM3D[J]. IEEE Transactions on Image Processing, 2017, 26(6): 2632–2643. doi: 10.1109/TIP.2017.2685339
|
LI Yingjiang, ZHANG Jiangwei, and WANG Maoning. Improved BM3D denoising method[J]. IET Image Processing, 2017, 11(12): 1197–1204. doi: 10.1049/iet-ipr.2016.1110
|
SICA F, COZZOLINO D, ZHU Xiaoxiang, et al. InSAR-BM3D: A nonlocal filter for SAR interferometric phase restoration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6): 3456–3467. doi: 10.1109/TGRS.2018.2800087
|
QIAO Tong, REN Jinchang, WANG Zheng, et al. Effective denoising and classification of hyperspectral images using curvelet transform and singular spectrum analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 119–133. doi: 10.1109/TGRS.2016.2598065
|
MAIRAL J, ELAD M, and SAPIRO G. Sparse representation for color image restoration[J]. IEEE Transactions on Image Processing, 2008, 17(1): 53–69. doi: 10.1109/TIP.2007.911828
|
CHATTERJEE P and MILANFAR P. Clustering-based denoising with locally learned dictionaries[J]. IEEE Transactions on Image Processing, 2009, 18(7): 1438–1451. doi: 10.1109/TIP.2009.2018575
|
MAIRAL J, BACH F, PONCE J, et al. Non-local sparse models for image restoration[C]. The 12th IEEE International Conference on Computer Vision, Kyoto, Japan, 2009: 2272–2279. doi: 10.1109/ICCV.2009.5459452.
|
KATKOVNIK V, FOI A, EGIAZARIAN K, et al. From local kernel to nonlocal multiple-model image denoising[J]. International Journal of Computer Vision, 2010, 86(1): 1. doi: 10.1007/s11263-009-0272-7
|
DONG Weisheng, LI Xin, ZHANG Lei, et al. Sparsity-based Image denoising via dictionary learning and structural clustering[C]. CVPR 2011, Providence, USA, 2011: 457–464. doi: 10.1109/CVPR.2011.5995478.
|
DONG Weisheng, ZHANG Lei, SHI Guangming, et al. Nonlocally centralized sparse representation for image restoration[J]. IEEE Transactions on Image Processing, 2013, 22(4): 1620–1630. doi: 10.1109/TIP.2012.2235847
|
DONG Weisheng, SHI Guangming, MA Yi, et al. Image restoration via simultaneous sparse coding: Where structured sparsity meets Gaussian scale mixture[J]. International Journal of Computer Vision, 2015, 114(2/3): 217–232. doi: 10.1007/s11263-015-0808-y
|
ZHA Zhiyuan, ZHANG Xinggan, WANG Qiong, et al. Group sparsity residual with non-local samples for image denoising[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Canada, 2018: 1353–1357. doi: 10.1109/ICASSP.2018.8461388.
|
NEEDELL D and TROPP J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2009, 26(3): 301–321. doi: 10.1016/j.acha.2008.07.002
|
WANG Jian, KWON S, and SHIM B. Generalized orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing, 2012, 60(12): 6202–6216. doi: 10.1109/tsp.2012.2218810
|
EMERSON T H, OLSON C C, and DOSTER T. Path-based dictionary augmentation: A framework for improving k -sparse image processing[J]. IEEE Transactions on Image Processing, 2020, 29: 1259–1270. doi: 10.1109/TIP.2019.2927331
|
JIN Y, KU B, AHN J, et al. Nonhomogeneous noise removal from side-scan sonar images using structural sparsity[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(8): 1215–1219. doi: 10.1109/LGRS.2019.2895843
|
HAN Jing, YUE Jiang, ZHNAG Yi, et al. Local sparse structure denoising for low-light-level image[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5177–5192. doi: 10.1109/TIP.2015.2447735
|
XIE Ting, LI Shutao, and SUN Bin. Hyperspectral images denoising via nonconvex regularized low-rank and sparse matrix decomposition[J]. IEEE Transactions on Image Processing, 2020, 29: 44–56. doi: 10.1109/TIP.2019.2926736
|
SONG Pingfan, WEIZMAN L, MOTA J F C, et al. Coupled dictionary learning for multi-contrast MRI reconstruction[C]. The 25th IEEE International Conference on Image Processing, Athens, Greece, 2018: 2880–2884. doi: 10.1109/ICIP.2018.8451341.
|
RICHARDSON W H. Bayesian-based iterative method of image restoration[J]. Journal of the Optical Society of America, 1972, 62(1): 55–59. doi: 10.1364/JOSA.62.000055
|
LUCY L B. An iterative technique for the rectification of observed distributions[J]. Astronomical Journal, 1974, 79: 745–754. doi: 10.1086/111605
|
LOU Yifei, BERTOZZI A L, and SOATTO S. Direct sparse deblurring[J]. Journal of Mathematical Imaging and Vision, 2011, 39(1): 1–12. doi: 10.1007/s10851-010-0220-8
|
YUAN Lu, SUN Jian, QUAN Long, et al. Image deblurring with blurred/noisy image pairs[J]. ACM Transactions on Graphics, 2007, 26(3): 1. doi: 10.1145/1276377.1276379
|
唐述, 谢显中. 多正则化混合约束的模糊图像盲复原方法[J]. 电子与信息学报, 2015, 37(4): 770–776. doi: 10.11999/JEIT140949
TANG Shu and XIE Xianzhong. Multi-regularization hybrid constraints method for blind image restoration[J]. Journal of Electronics &Information Technology, 2015, 37(4): 770–776. doi: 10.11999/JEIT140949
|
HU Zhe, HUANG Jiabin, and YANG M H. Single image deblurring with adaptive dictionary learning[C]. The 2010 IEEE International Conference on Image Processing, Hong Kong, China, 2010: 1169–1172. doi: 10.1109/ICIP.2010.5651892.
|
YU Jing, CHANG Zhenchun, XIAO Chuangbai, et al. Blind image deblurring based on sparse representation and structural self-similarity[C]. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, USA, 2017: 1328–1332. doi: 10.1109/ICASSP.2017.7952372.
|
ROSTAMI M, MICHAILOVICH O, and WANG Zhou. Image deblurring using derivative compressed sensing for optical imaging application[J]. IEEE Transactions on Image Processing, 2012, 21(7): 3139–3149. doi: 10.1109/TIP.2012.2190610
|
CHEN Jia, YUAN Lu, TANG C K, et al. Robust dual motion deblurring[C]. 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008: 1–8. doi: 10.1109/CVPR.2008.4587830.
|
ZHU Xiang, ŠROUBEK F, and MILANFAR P. Deconvolving PSFs for a better motion deblurring using multiple images[C]. The 12th European Conference on Computer Vision, Florence, Italy, 2012: 636–647. doi: 10.1007/978-3-642-33715-4_46.
|
ZHANG Haichao, WIPF D, and ZHANG Yanning. Multi-image blind deblurring using a coupled adaptive sparse prior[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 1051–1058. doi: 10.1109/CVPR.2013.140.
|
XIANG Fengtao, HUANG Yumin, GU Xueqiang, et al. A restoration method of infrared image based on compressive sampling[C]. The 8th International Conference on Intelligent Human-machine Systems and Cybernetics, Hangzhou, China, 2016: 493–496. doi: 10.1109/IHMSC.2016.98.
|
ZHANG Yan, PU Haitao, and LIAN Jian. Quick response barcode deblurring via l0-regularisation based sparse optimisation[J]. IET Image Processing, 2019, 13(8): 1254–1258. doi: 10.1049/iet-ipr.2018.5738
|
LEE H, JUNG C, and KIM C. Blind deblurring of text images using a text-specific hybrid dictionary[J]. IEEE Transactions on Image Processing, 2020, 29: 710–723. doi: 10.1109/TIP.2019.2933739
|
吴敏, 邢孟道, 张磊. 基于压缩感知的二维联合超分辨ISAR成像算法[J]. 电子与信息学报, 2014, 36(1): 187–193. doi: 10.3724/SP.J.1300.2012.20093
WU Min, XING Mengdao, and ZHANG Lei. Two dimensional joint super-resolution ISAR imaging algorithm based on compressive sensing[J]. Journal of Electronics &Information Technology, 2014, 36(1): 187–193. doi: 10.3724/SP.J.1300.2012.20093
|
DEKA B, GORAIN K K, KALITA N, et al. Single image super-resolution using compressive sensing with learned overcomplete dictionary[C]. The 2013 4th National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics, Jodhpur, India, 2013: 1–5. doi: 10.1109/NCVPRIPG.2013.6776176.
|
SUN Yicheng, GU Guohua, SUI Xiubao, et al. Single image super-resolution using compressive sensing with a redundant dictionary[J]. IEEE Photonics Journal, 2015, 7(2): 6900411. doi: 10.1109/JPHOT.2015.2409063
|
SUN Yicheng, GU Guohua, SUI Xiubao, et al. Compressive superresolution imaging based on local and nonlocal regularizations[J]. IEEE Photonics Journal, 2016, 8(1): 6900112. doi: 10.1109/JPHOT.2016.2516251
|
XIAO Aoran, SHAO Zhenfeng, and WANG Zhongyuan. Sparse coding for super-resolution via K-means classification[C]. 2017 IEEE International Conference on Multimedia & Expo Workshops, Hong Kong, China, 2017: 363–368. doi: 10.1109/ICMEW.2017.8026254.
|
ZHOU Ruofei, WANG Gang, ZHAO Donglai, et al. Super-resolution of low-quality images based on compressed sensing and sequence information[C]. The 90th IEEE Vehicular Technology Conference, Honolulu, USA, 2019: 1–5. doi: 10.1109/VTCFall.2019.8891073.
|
LIAO Haibin, DAI Wenhua, ZHOU Qianjin, et al. Non-local similarity dictionary learning based face super-resolution[C]. The 12th International Conference on Signal Processing, Hangzhou, China, 2014: 88-93. doi: 10.1109/ICOSP.2014.7014975.
|
RANA S, SINGH H, and KUMAR A. Comparative analysis of single and multi frame super resolution in satellite imagery[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 7220–7223. doi: 10.1109/IGARSS.2018.8517329.
|
GU Peijian and ZHENG Lin. Fast low-dose computed tomography image super-resolution reconstruction via sparse coding and random forests[C]. The 8th IEEE Joint International Information Technology and Artificial Intelligence Conference, Chongqing, China, 2019: 1400–1403. doi: 10.1109/ITAIC.2019.8785482.
|
SUN Yicheng, GU Guohua, SUI Xiubao, et al. Super-resolution imaging using compressive sensing and binary pure-phase annular filter[J]. IEEE Photonics Journal, 2017, 9(3): 7802409. doi: 10.1109/JPHOT.2017.2696519
|
MARCUS G. Deep learning: A critical appraisal[J]. arXiv: 1801.00631, 2018.
|