Advanced Search
Volume 42 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
Cheng HU, Linlin FANG, Rui WANG, Chao ZHOU, Weidong LI, Fan ZHANG, Tianjiao LANG, Teng LONG. Analysis of Insect RCS Characteristics[J]. Journal of Electronics & Information Technology, 2020, 42(1): 140-153. doi: 10.11999/JEIT190611
Citation: Cheng HU, Linlin FANG, Rui WANG, Chao ZHOU, Weidong LI, Fan ZHANG, Tianjiao LANG, Teng LONG. Analysis of Insect RCS Characteristics[J]. Journal of Electronics & Information Technology, 2020, 42(1): 140-153. doi: 10.11999/JEIT190611

Analysis of Insect RCS Characteristics

doi: 10.11999/JEIT190611
Funds:  The Special Fund for Research on National Major Research Instruments (31727901)
  • Received Date: 2019-08-12
  • Rev Recd Date: 2019-11-22
  • Available Online: 2019-11-30
  • Publish Date: 2020-01-21
  • Insect radar is the most effective tool for insect migration observation. In order to realize target recognition of insect radar, it is important to study the RCS characteristics of insects. This paper will analyze the static and dynamic Radar Cross Section (RCS) characteristics of insects. Firstly, based on the measured X-band fully-polarimetric RCS data, the static RCS characteristics of insects are analyzed, including the variations of horizontal and vertical polarization RCS with body weight respectively, and the variation of insect polarization pattern with body weight. Secondly, the dielectrics and geometric models currently used to study the RCS characteristics of insects are summarized by electromagnetic simulation. Twelve dielectric models consisting of four dielectrics (including water, spinal cord, dry skin, and chitin and hemolymph mixture) and three geometric models (including equivalent size prolate spheroid, equivalent mass prolate spheroid and triaxial prolate spheroid) are compared, and it be found that the RCS characteristics of equivalent mass prolate spheroid are closest to that of the real insects. Then, the fluctuation characteristics of insect dynamic RCS are analyzed based on the insect echo data measured in field by a Ku-band high-resolution insect radar. The measured insect dynamic RCS fluctuation data are fitted with four classical RCS fluctuation distribution  models (χ2, Log-normal, Weibull and Gamma distribution), respectively. It can be seen from the least square error of fitting and goodness of fit test that Gamma distribution gives the best description of the statistical characteristics of insect RCS fluctuations. Finally, the application of insect RCS characteristics to insect orientation, mass and body length measurements for insect radars is summarized.

  • loading
  • HU Gao, LIM K S, HORVITZ N, et al. Mass seasonal bioflows of high-flying insect migrants[J]. Science, 2016, 354(6319): 1584–1587. doi: 10.1126/science.aah4379
    吴秋琳, 姜玉英, 胡高, 等. 中国热带和南亚热带地区草地贪夜蛾春夏两季迁飞轨迹的分析[J]. 植物保护, 2019, 45(3): 1–9.

    WU Qiulin, JIANG Yuying, HU Gao, et al. Analysis on spring and summer migration routes of fall armyworm (Spodoptera frugiperda) from tropical and southern subtropical zones of China[J]. Plant Protection, 2019, 45(3): 1–9.
    HU Cheng, WANG Yixuan, WANG Rui, et al. An improved radar detection and tracking method for small UAV under clutter environment[J]. Science China Information Sciences, 2019, 62(2): 29306. doi: 10.1007/s11432-018-9598-x
    ZHOU Chao, WANG Rui, and HU Cheng. Equivalent point estimation for small target groups tracking based on MLE[J]. Science China Information Sciences, 2019. doi: 10.1007/s11432-019-1518-x
    SMITH A D, RILEY J R, and GREGORY R D. A method for routine monitoring of the aerial migration of insects by using a vertical-looking radar[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 1993, 340(1294): 393–404. doi: 10.1098/rstb.1993.0081
    GLOVER K M, HARDY K R, LANDRY C R, et al. Radar characteristics of known insects in free flight[C]. The 12th Conference on Radar Meteorology, Oklahoma, USA, 1966: 254–258.
    RILEY J R. Angular and temporal variations in the radar cross-sections of insects[J]. Proceedings of the Institution of Electrical Engineers, 1973, 120(10): 1229–1232. doi: 10.1049/piee.1973.0251
    RILEY J R, VAUGHN C R, WOLF W, et al. Quantitative analysis of radar returns from insects[C]. A Workshop Held at NASA Wallops Flight Center, Wallops Island, USA, 1978: 131–158.
    RILEY J R. Radar cross section of insects[J]. Proceedings of the IEEE, 1985, 73(2): 228–232. doi: 10.1109/PROC.1985.13135
    ALDHOUS A C. An investigation of the polarisation dependence of insect radar cross sections at constant aspect[D]. [Ph.D. dissertation], Cranfield University, 1989.
    MURTON R K and WRIGHT E N. The Problems of Birds as Pests[M]. New York: Academic Press, 1968: 53–86.
    SCHAEFER G W. Radar observations of insect flight[C]. Insect Flight Symposia of the Royal Entomological Society, London, UK, 1976: 157–197.
    MIRKOVIC D, STEPANIAN P M, WAINWRIGHT C E, et al. Characterizing animal anatomy and internal composition for electromagnetic modelling in radar entomology[J]. Remote Sensing in Ecology and Conservation, 2019, 5(2): 169–179. doi: 10.1002/rse2.94
    WANG Rui, HU Cheng, LIU Changjiang, et al. Migratory insect multifrequency radar cross sections for morphological parameter estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 3450–3461. doi: 10.1109/TGRS.2018.2884926
    HU Cheng, LI Wenqing, WANG Rui, et al. Insect flight speed estimation analysis based on a full-polarization radar[J]. Science China Information Sciences, 2018, 61(10): 109306. doi: 10.1007/s11432-018-9484-2
    WANG Rui, HU Cheng, FU Xiaowei, et al. Micro-Doppler measurement of insect wing-beat frequencies with W-band coherent radar[J]. Scientific Reports, 2017, 7(1): 1396. doi: 10.1038/s41598-017-01616-4
    HU Cheng, KONG Shaoyang, WANG Rui, et al. Identification of migratory insects from their physical features using a decision-tree support vector machine and its application to radar entomology[J]. Scientific Reports, 2018, 8(1): 5449. doi: 10.1038/S41598-018-23825-1
    汪兵. 非独立同分布起伏目标建模与检测算法研究[D].[博士论文], 电子科技大学, 2017.

    WANG Bing. Research on modeling and the detection algorithm of non-ⅡD fluctuation targets[D].[Ph.D. dissertation], University of Electronic Science and Technology of China, 2017.
    SWERLING P. Probability of detection for fluctuating targets[J]. IRE Transactions on Information Theory, 1960, 6(2): 269–308. doi: 10.1109/TIT.1960.1057561
    WEINSTOCK W. Target cross section models for radar system analysis[D]. [Ph.D. dissertation], University of Pennsylvania, 1964.
    LEWINSKI D. Nonstationary probabilistic target and clutter scattering models[J]. IEEE Transactions on Antennas and Propagation, 1983, 31(3): 490–498. doi: 10.1109/TAP.1983.1143067
    SHNIDMAN D A. Expanded Swerling target models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 1059–1069. doi: 10.1109/TAES.2003.1238757
    ROSE M, HAIMOV S, and MOORE R K. Optimum detection of Weibull-distributed targets[C]. OCEANS '93, Victoria, Canada, 1993: Ⅱ/5-Ⅱ/9. doi: 10.1109/OCEANS.1993.326056.
    SHNIDMAN D A. Calculation of probability of detection for log-normal target fluctuations[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(1): 172–174. doi: 10.1109/7.68161
    SLOCUMB B J and KLUSMAN Ⅲ M E. A multiple model SNR/RCS likelihood ratio score for radar-based feature-aided tracking[J]. SPIE, 2005, 5913: 540–551. doi: 10.1117/12.615288
    SHI Weiqiang, SHI Xiaowei, and XU Le. Radar Cross Section (RCS) statistical characterization using Weibull distribution[J]. Microwave and Optical Technology Letters, 2013, 55(6): 1355–1358. doi: 10.1002/mop.27557
    林刚, 许家栋. 目标RCS动态数据的分布特征研究[J]. 现代雷达, 2006, 28(2): 18–20. doi: 10.3969/j.issn.1004-7859.2006.02.006

    LIN Gang and XU Jiadong. Study of the statistical characterization of targets’ RCS dynamic data[J]. Modern Radar, 2006, 28(2): 18–20. doi: 10.3969/j.issn.1004-7859.2006.02.006
    史伟强, 徐乐, 史小卫, 等. 基于完备对数正态分布模型的隐形飞行器动态RCS统计特性研究[J]. 电子与信息学报, 2013, 35(9): 2121–2125. doi: 10.3724/SP.J.1146.2012.01161

    SHI Weiqiang, XU Le, SHI Xiaowei, et al. Dynamic RCS statistic characterization of stealth aircraft using complete lognormal distribution[J]. Journal of Electronics &Information Technology, 2013, 35(9): 2121–2125. doi: 10.3724/SP.J.1146.2012.01161
    沈鹏. 海面舰船RCS起伏分布模型研究[J]. 指挥控制与仿真, 2019, 41(4): 37–39. doi: 10.3969/j.issn.1673-3819.2019.04.008

    SHEN Peng. RCS fluctuation distribution models research of Ship Target on Sea[J]. Command Control &Simulation, 2019, 41(4): 37–39. doi: 10.3969/j.issn.1673-3819.2019.04.008
    SKOLNIK M I. Radar Handbook[M]. 3rd ed. New York, USA: McGraw-Hill, 2008.
    HU Cheng, LI Weidong, WANG Rui, et al. Accurate insect orientation extraction based on polarization scattering matrix estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1755–1759. doi: 10.1109/LGRS.2017.2733719
    HOBBS S E and ALDHOUS A C. Insect ventral radar cross-section polarisation dependence measurements for radar entomology[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(6): 502–508. doi: 10.1049/ip-rsn:20060019
    VAUGHN C R. Birds and insects as radar targets: A review[J]. Proceedings of the IEEE, 1985, 73(2): 205–227. doi: 10.1109/proc.1985.13134
    MIRKOVIC D, STEPANIAN P M, KELLY J F, et al. Electromagnetic model reliably predicts radar scattering characteristics of airborne organisms[J]. Scientific Reports, 2016, 6(1): 35637. doi: 10.1038/srep35637
    NELSON S O, BARTLEY P G Jr, and LAWRENCE K C. RF and microwave dielectric properties of stored-grain insects and their implications for potential insect control[J]. Transactions of the ASAE, 1998, 41(3): 685–692. doi: 10.13031/2013.17194
    HOBBS S, ALLSOPP K, and WOLF W. Signal analysis for an entomological radar with a vertical Nutating beam[R]. College of Aeronautics Report 9919, 2003.
    DOWDY P C. RCS probability distribution function modeling of a fluctuating target[C]. The 1991 IEEE National Radar Conference, Los Angeles, USA, 1991: 164–168. doi: 10.1109/NRC.1991.114752.
    RILEY J R. Collective orientation in night-flying insects[J]. Nature, 1975, 253(5487): 113–114. doi: 10.1038/253113a0
    CHAPMAN J W, NESBIT R L, BURGIN L E, et al. Flight orientation behaviors promote optimal migration trajectories in high-flying insects[J]. Science, 2010, 327(5966): 682–685. doi: 10.1126/science.1182990
    HARMAN I T and DRAKE V A. Insect monitoring radar: Analytical time-domain algorithm for retrieving trajectory and target parameters[J]. Computers and Electronics in Agriculture, 2004, 43(1): 23–41. doi: 10.1016/j.compag.2003.08.005
    HU Cheng, LI Weidong, WANG Rui, et al. Insect biological parameter estimation based on the invariant target parameters of the scattering matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 6212–6225. doi: 10.1109/TGRS.2019.2904869
    CHAPMAN J W, SMITH A D, WOIWOD I P, et al. Development of vertical-looking radar technology for monitoring insect migration[J]. Computers and Electronics in Agriculture, 2002, 35(2/3): 95–110. doi: 10.1016/s0168-1699(02)00013-3
    DRAKE V A, CHAPMAN J W, LIM K S, et al. Ventral-aspect radar cross sections and polarization patterns of insects at X band and their relation to size and form[J]. International Journal of Remote Sensing, 2017, 38(18): 5022–5044. doi: 10.1080/01431161.2017.1320453
    HU Cheng, LI Weidong, WANG Rui, et al. Accurate insect body length extraction based on the invariant target parameters[C]. 2018 IEEE International Conference on Computational Electromagnetics, Chengdu, China, 2018: 1–3. doi: 10.1109/COMPEM.2018.8496592.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(9)

    Article Metrics

    Article views (3082) PDF downloads(148) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return