Advanced Search
Volume 42 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
Haitao ZHAO, Huiling CHENG, Yi DING, Hui ZHANG, Hongbo ZHU. Research on Traffic Accident Risk Prediction Algorithm of Edge Internet of Vehicles Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2020, 42(1): 50-57. doi: 10.11999/JEIT190595
Citation: Haitao ZHAO, Huiling CHENG, Yi DING, Hui ZHANG, Hongbo ZHU. Research on Traffic Accident Risk Prediction Algorithm of Edge Internet of Vehicles Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2020, 42(1): 50-57. doi: 10.11999/JEIT190595

Research on Traffic Accident Risk Prediction Algorithm of Edge Internet of Vehicles Based on Deep Learning

doi: 10.11999/JEIT190595
Funds:  The National Natural Science Foundation of China (61771252), The Natural Science Foundation Project of Jiangsu Province (BK20171444), The Jiangsu Province University Natural Science Research Major Project (18KJA510005), “The Six talents High Peaks” Class B Funding Project of Jiangsu Province (DZXX-041), The Jiangsu Provincial Association for Science and Technology Talents Entrustment Project, Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX19_0949)
  • Received Date: 2019-08-06
  • Rev Recd Date: 2019-11-05
  • Available Online: 2019-11-13
  • Publish Date: 2020-01-21
  • For the problem that the traditional traffic accident risk prediction algorithm can not automatically discriminate data features, and the model expression ability is poor, a traffic accident risk prediction algorithm based on deep learning is proposed. The algorithm firstly extracts multi-dimensional features by using the convolutional neural network established in the edge server for a large amount of traffic data collected in the edge network of vehicles. After normalization, de-equalization and other pre-processing, the new variables are input into the convolutional layer and the pooling layer for training. Finally, based on the output discrimination value of the fully connected layer, the risk of traffic accidents can be predicted by simulation. The simulation results show that the algorithm is validated to predict the risk of traffic accidents, and has lower loss and higher prediction accuracy than the traditional machine learning BP neural network algorithm and Logical Regression algorithm.
  • loading
  • GOTHANE S and SARODE M V. Analyzing factors, construction of dataset, estimating Importance of factor, and generation of association rules for Indian road accident[C]. The 6th IEEE International Conference on Advanced Computing, Bhimavaram, India, 2016: 15–18. doi: 10.1109/IACC.2016.13.
    IKRAM N and MAHAJAN S. Road accidents: Overview of its causes, avoidance scheme and a new proposed technique for avoidance[C]. The 3rd International Conference on Computing for Sustainable Global Development, New Delhi, India, 2016: 497–499.
    LIN Lei, WANG Qian, and SADEK A W. Data mining and complex network algorithms for traffic accident analysis[J]. Transportation Research Record: Journal of the Transportation Research Board, 2014, 2460(1): 128–136. doi: 10.3141/2460-14
    ZONG Fang, CHEN Xiangru, TANG Jinjun, et al. Analyzing traffic crash severity with combination of information entropy and Bayesian network[J]. IEEE Access, 2019, 7: 63288–63302. doi: 10.1109/ACCESS.2019.2916691
    GHOSH B, ASIF M T, and DAUWELS J. Bayesian prediction of the duration of non-recurring road incidents[C]. 2016 IEEE Region 10 Conference, Singapore, 2016: 87–90. doi: 10.1109/TENCON.2016.7847964.
    秦利燕, 邵春福, 赵亮. 道路交通事故宏观预测模型[J]. 武汉理工大学学报: 交通科学与工程版, 2010, 34(1): 154–157. doi: 10.3963/j.issn.1006-2823.2010.01.038

    QIN Liyan, SHAO Chunfu, and ZHAO Liang. Macro prediction model of road traffic accident based on neural network[J]. Journal of Wuhan University of Technology:Transportation Science &Engineering, 2010, 34(1): 154–157. doi: 10.3963/j.issn.1006-2823.2010.01.038
    TAO Lu, ZHU Dunyao, YAN Linxin, et al. The traffic accident hotspot prediction: Based on the logistic regression method[C]. 2015 International Conference on Transportation Information and Safety, Wuhan, China, 2015: 107–110. doi: 10.1109/ICTIS.2015.7232194.
    OLUTAYO V A and ELUDIRE A A. Traffic accident analysis using decision trees and neural networks[J]. International Journal of Information Technology and Computer Science, 2014, 6(2): 22–28. doi: 10.5815/ijitcs.2014.02.03
    YU B, WANG Y T, YAO J B, et al. A comparison of the performance of ANN and SVM for the prediction of traffic accident duration[J]. Neural Network World, 2016, 26(3): 271–287. doi: 10.14311/NNW.2016.26.015
    ZHAO Haitao, MAO Tianqi, DUAN Jiaxiu, et al. FMCNN: A factorization machine combined neural network for driving safety prediction in vehicular communication[J]. IEEE Access, 2019, 7: 11698–11706. doi: 10.1109/ACCESS.2019.2891619
    ZHANG Jian, LI Zhibin, PU Ziyuan, et al. Comparing prediction performance for crash injury severity among various machine learning and statistical methods[J]. IEEE Access, 2018, 6: 60079–60087. doi: 10.1109/ACCESS.2018.2874979
    XU Jinlai, PALANISAMY B, LUDWIG H, et al. Zenith: Utility-aware resource allocation for edge computing[C]. 2017 IEEE International Conference on Edge Computing, Honolulu, USA, 2017: 47–54. doi: 10.1109/IEEE.EDGE.2017.15.
    ZHENG Yang, WANG Jianqiang, LI Xiaofei, et al. Driving risk assessment using cluster analysis based on naturalistic driving data[C]. The 17th IEEE International Conference on Intelligent Transportation Systems, Qingdao, China, 2014: 2584–2589. doi: 10.1109/ITSC.2014.6958104.
    CHEN Yuanfang, SHU Lei, and WANG Lei. Poster abstract: Traffic flow prediction with big data: A deep learning based time series model[C]. 2017 IEEE Conference on Computer Communications Workshops, Atlanta, USA, 2017: 1010–1011. doi: 10.1109/INFCOMW.2017.8116535.
    梁晓萍, 郭振军, 朱昌洪. 基于头脑风暴优化算法的BP神经网络模糊图像复原[J]. 电子与信息学报, 2019, 41(12): 2980–2986. doi: 10.11999/JEIT190261

    LIANG Xiaoping, GUO Zhenjun, and ZHU Changhong. BP neural network fuzzy image restoration based on brainstorm optimization algorithm[J]. Journal of Electronics and Information Technology, 2019, 41(12): 2980–2986. doi: 10.11999/JEIT190261
    殷礼胜, 唐圣期, 李胜, 等. 基于整合移动平均自回归和遗传粒子群优化小波神经网络组合模型的交通流预测[J]. 电子与信息学报, 2019, 41(9): 2273–2279. doi: 10.11999/JEIT181073

    YIN Lisheng, TANG Shengqi, LI Sheng, et al. Traffic flow prediction based on hybrid model of auto-regressive integrated moving average and genetic particle swarm optimization wavelet neural network[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2273–2279. doi: 10.11999/JEIT181073
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (3549) PDF downloads(208) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return