Advanced Search
Volume 41 Issue 8
Aug.  2019
Turn off MathJax
Article Contents
Shan GAI, Zhongyun BAO. Banknote Recognition Research Based on Improved Deep Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2019, 41(8): 1992-2000. doi: 10.11999/JEIT181097
Citation: Shan GAI, Zhongyun BAO. Banknote Recognition Research Based on Improved Deep Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2019, 41(8): 1992-2000. doi: 10.11999/JEIT181097

Banknote Recognition Research Based on Improved Deep Convolutional Neural Network

doi: 10.11999/JEIT181097
Funds:  The National Natural Science Foundation of China(61563037), The Outstanding Youth Scheme of Jiangxi Province (20171BCB23057)
  • Received Date: 2018-11-28
  • Rev Recd Date: 2019-03-27
  • Available Online: 2019-04-21
  • Publish Date: 2019-08-01
  • In order to improve the recognition rate of banknotes, the improved banknote recognition algorithm based on Deep Convolutional Neural Network(DCNN) is proposed. Firstly, the algorithm constructs a deep convolution layer by integrating transfer learning, Leaky-Rectified Liner Unit (Leaky ReLU) function, Batch Normalization(BN) and multi-level residual unit that perform stable and fast feature extraction and learning on input different size banknotes. Secondly, a fixed-size output representation of the extracted banknote features is obtained by using the improved multi-level spatial pyramid pooling algorithm. Finally, the banknote classification is implemented by the full connection layer and the softmax layer of the network. The experimental results show that the proposed algorithm can effectively improve the recognition rate of banknotes, and has better generalization ability and robustness than the traditional banknote classification method. Meanwhile, the algorithm can meet the real-time requirements of the banknote sorting system.
  • loading
  • KATO N, SUZUKI M, OMACHI S, et al. A handwritten character recognition system using directional element feature and asymmetric mahalanobis distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(3): 258–262. doi: 10.1109/34.754617
    TAKEDA F and OMATU S. High speed paper currency recognition by neural networks[J]. IEEE Transactions on Neural Networks, 1995, 6(1): 73–77. doi: 10.1109/72.363448
    刘家锋, 刘松波, 唐降龙. 一种实时纸币识别方法的研究[J]. 计算机研究与发展, 2003, 40(7): 1057–1061.

    LIU Jiafeng, LIU Songbo, and TANG Xianglong. An algorithm of real-time paper currency recongnition[J]. Journal of Computer Research and Development, 2003, 40(7): 1057–1061.
    CHOI E, LEE J, and YOON J. Feature extraction for bank note classification using wavelet transform[C]. The IEEE 18th International Conference on Pattern Recognition (ICPR), Hong Kong, China, 2006: 934–937. doi: 10.1109/ICPR.2006.553.
    GAI Shan, YANG Guowei, and WAN Minghua. Employing quaternion wavelet transform for banknote classification[J]. Neurocomputing, 2013, 118: 171–178. doi: 10.1016/j.neucom.2013.02.029
    JIN Ye, SONG Ling, TANG Xianglong, et al. A hierarchical approach for banknote image processing using homogeneity and FFD model[J]. IEEE Signal Processing Letters, 2008, 15: 425–428. doi: 10.1109/LSP.2008.921470
    吴震东, 王雅妮, 章坚武. 基于深度学习的污损指纹识别研究[J]. 电子与信息学报, 2017, 39(7): 1585–1591. doi: 10.11999/JEIT161121

    WU Zhendong, WANG Yani, and ZHANG Jianwu. Fouling and damaged fingerprint recognition based on deep learning[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1585–1591. doi: 10.11999/JEIT161121
    樊养余, 李祖贺, 王凤琴, 等. 基于跨领域卷积稀疏自动编码器的抽象图像情绪性分类[J]. 电子与信息学报, 2017, 39(1): 167–175. doi: 10.11999/JEIT160241

    FAN Yangyu, LI Zuhe, WANG Fengqin, et al. Affective abstract image classification based on convolutional sparse autoencoders across different domains[J]. Journal of Electronics &Information Technology, 2017, 39(1): 167–175. doi: 10.11999/JEIT160241
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Nevada, USA, 2012: 1097–1105.
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. International Conference on Learning Representations (ICLR), Banff, Canada, 2015: 168–175.
    SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015: 1–9. doi: 10.1109/CVPR.2015.7298594.
    SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 2818–2826. doi: 10.1109/CVPR.2016.308.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1916. doi: 10.1109/TPAMI.2015.2389824
    PENG Peixi, TIAN Yonghong, XIANG Tao, et al. Joint semantic and latent attribute modeling for cross-class transfer learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(7): 1625–1638. doi: 10.1109/TPAMI.2017.2723882
    IOFFE S and SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]. Proceedings of the 32nd International Conference on International Conference on Machine Learning, Lille, France, 2015: 448–456.
    KINGMA D P and BA J. Adam: A method for stochastic optimization[C]. Proceedings of the 3rd International Conference on Learning Representations (ICLR), San Diego, USA, 2015: 1–8.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification[C]. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015: 1026–1034. doi: 10.1109/ICCV.2015.123.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(6)

    Article Metrics

    Article views (4159) PDF downloads(116) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return