Advanced Search
Volume 41 Issue 8
Aug.  2019
Turn off MathJax
Article Contents
Jun LUO, Yongsong YANG, Baoyu SHI. Multi-threshold Image Segmentation of 2D Otsu Based on Improved Adaptive Differential Evolution Algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(8): 2017-2024. doi: 10.11999/JEIT180949
Citation: Jun LUO, Yongsong YANG, Baoyu SHI. Multi-threshold Image Segmentation of 2D Otsu Based on Improved Adaptive Differential Evolution Algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(8): 2017-2024. doi: 10.11999/JEIT180949

Multi-threshold Image Segmentation of 2D Otsu Based on Improved Adaptive Differential Evolution Algorithm

doi: 10.11999/JEIT180949
  • Received Date: 2018-10-12
  • Rev Recd Date: 2019-03-04
  • Available Online: 2019-03-28
  • Publish Date: 2019-08-01
  • The multi-threshold image segmentation of the classical 2D maximal between-cluster variance method has deficiencies such as large computation, long calculation time, low segmentation precision and so on. A multi-threshold segmentation of 2D Otsu based on improved Adaptive Differential Evolution (JADE) algorithm is proposed. Firstly, in order to enhance the quality of the initialized population and improve the adaptability of the control parameters, the chaotic mapping mechanism is integrated into the JADE algorithm. Furthermore, the optimal segmentation threshold of 2D Otsu multi-threshold image is solved by improved JADE algorithm. Finally, the algorithm is compared with multi-threshold image segmentation method of 2D Otsu based on Differential Evolution (DE), JADE, Improved Differential Evolution with Adaptive Sinusoidal Parameters (LSHADE-cnEpSin) and Enhanced Adaptive Differential Transformation Differential Evolution (EFADE) algorithm. The experimental results show that compared with the other four algorithms, the multi-threshold image segmentation of 2D Otsu based on the improved JADE algorithm has a significant improvement in terms of segmentation speed and accuracy.
  • loading
  • 刘健庄, 栗文青. 灰度图象的二维Otsu自动阈值分割法[J]. 自动化学报, 1993, 19(1): 101–105. doi: 10.16383/j.aas.1993.01.015

    LIU Jianzhuang and LI Wenqing. The automatic thresholding of gray-level pictures via two-dimensional otsu method[J]. Acta Automatica Sinica, 1993, 19(1): 101–105. doi: 10.16383/j.aas.1993.01.015
    申铉京, 刘翔, 陈海鹏. 基于多阈值Otsu准则的阈值分割快速计算[J]. 电子与信息学报, 2017, 39(1): 144–149. doi: 10.11999/JEIT160248

    SHEN Xuanjing, LIU Xiang, and CHEN Haipeng. Fast computation of threshold based on multi-threshold Otsu criterion[J]. Journal of Electronics &Information Technology, 2017, 39(1): 144–149. doi: 10.11999/JEIT160248
    HU Min, LI Mei, and WANG Ronggui. Application of an improved Otsu algorithm in image segmentation[J]. Journal of Electronic Measurement and Instrument, 2010, 24(5): 443–449. doi: 10.3724/SP.J.1187.2010.00443
    ZHANG Jingqiao and SANDERSON A C. JADE: Adaptive differential evolution with optional external archive[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 945–958. doi: 10.1109/TEVC.2009.2014613
    TANABE R and FUKUNAGA A. Success-history based parameter adaptation for differential evolution[C]. 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 2013: 71–78.
    TANABE R and FUKUNAGA A S. Improving the search performance of SHADE using linear population size reduction[C]. 2014 IEEE Congress on Evolutionary Computation, Beijing, China, 2014: 1658–1665.
    AWAD N H, ALI M Z, SUGANTHAN P N, et al. An ensemble sinusoidal parameter adaptation incorporated with L-SHADE for solving CEC2014 benchmark problems[C]. 2016 IEEE Congress on Evolutionary Computation, Vancouver, Canada, 2016: 2958–2965.
    AWAD N H, ALI M Z, and SUGANTHAN P N. Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems[C]. 2017 IEEE Congress on Evolutionary Computation, San Sebastian, Spain, 2017: 372–379.
    MOHAMED A W and SUGANTHAN P N. Real-parameter unconstrained optimization based on enhanced fitness-adaptive differential evolution algorithm with novel mutation[J]. Soft Computing, 2018, 22(10): 3215–3235. doi: 10.1007/s00500-017-2777-2
    STHITPATTANAPONGSA P and SRINARK T. A two-stage Otsu’S thresholding based method on a 2D histogram[C]. IEEE 7th International Conference on Intelligent Computer Communication and Processing, Cluj-Napoca, Romania, 2011: 345–348.
    张春美, 陈杰, 辛斌. 参数适应性分布式差分进化算法[J]. 控制与决策, 2014, 29(4): 701–706. doi: 10.13195/j.kzyjc.2013.0080

    ZHANG Chunmei, CHEN Jie, and XIN Bin. Distributed differential evolution algorithm with adaptive parameters[J]. Control and Decision, 2014, 29(4): 701–706. doi: 10.13195/j.kzyjc.2013.0080
    王李进, 钟一文, 尹义龙. 带外部存档的正交交叉布谷鸟搜索算法[J]. 计算机研究与发展, 2015, 52(11): 2496–2507. doi: 10.7544/issn1000-1239.2015.20148042

    WANG Lijin, ZHONG Yiwen, and YIN Yilong. Orthogonal crossover cuckoo search algorithm with external archive[J]. Journal of Computer Research and Development, 2015, 52(11): 2496–2507. doi: 10.7544/issn1000-1239.2015.20148042
    RERE L M R, FANANY M I, and MURNI A. Adaptive DE based on chaotic sequences and random adjustment for image contrast enhancement[C]. 2014 International Conference of Advanced Informatics: Concept, Theory and Application, Bandung, Indonesia, 2015: 220–225. doi: 10.1109/ICAICTA.2014.7005944.
    陈志刚, 梁涤青, 邓小鸿, 等. Logistic混沌映射性能分析与改进[J]. 电子与信息学报, 2016, 38(6): 1547–1551. doi: 10.11999/JEIT151039

    CHEN Zhigang, LIANG Diqing, DENG Xiaohong, et al. Performance analysis and improvement of logistic chaotic mapping[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1547–1551. doi: 10.11999/JEIT151039
    陈如清. 采用新型粒子群算法的电力电子装置在线故障诊断方法[J]. 中国电机工程学报, 2008, 28(24): 70–74. doi: 10.3321/j.issn:0258-8013.2008.24.012

    CHEN Ruqing. A novel PSO based on-line fault diagnosis approach for power electronic system[J]. Proceedings of the CSEE, 2008, 28(24): 70–74. doi: 10.3321/j.issn:0258-8013.2008.24.012
    SHA Chunshi, HOU Jian, and CUI Hongxia. A robust 2D Otsu’s thresholding method in image segmentation[J]. Journal of Visual Communication and Image Representation, 2016, 41: 339–351. doi: 10.1016/j.jvcir.2016.10.013
    HUYNH-THU Q and GHANBARI M. The accuracy of PSNR in predicting video quality for different video scenes and frame rates[J]. Telecommunication Systems, 2012, 49(1): 35–48. doi: 10.1007/s11235-010-9351-x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (3632) PDF downloads(177) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return