Advanced Search
Volume 41 Issue 8
Aug.  2019
Turn off MathJax
Article Contents
Zhiqiang HOU, Shuai WANG, Xiufeng LIAO, Wangsheng YU, Jiaoyao WANG, Chuanhua CHEN. Adaptive Regularized Correlation Filters for Visual Tracking Based on Sample Quality Estimation[J]. Journal of Electronics & Information Technology, 2019, 41(8): 1983-1991. doi: 10.11999/JEIT180921
Citation: Zhiqiang HOU, Shuai WANG, Xiufeng LIAO, Wangsheng YU, Jiaoyao WANG, Chuanhua CHEN. Adaptive Regularized Correlation Filters for Visual Tracking Based on Sample Quality Estimation[J]. Journal of Electronics & Information Technology, 2019, 41(8): 1983-1991. doi: 10.11999/JEIT180921

Adaptive Regularized Correlation Filters for Visual Tracking Based on Sample Quality Estimation

doi: 10.11999/JEIT180921
Funds:  The National Natural Science Foundation of China (61473309, 61703423)
  • Received Date: 2018-09-27
  • Rev Recd Date: 2019-05-20
  • Available Online: 2019-05-27
  • Publish Date: 2019-08-01
  • Correlation Filters (CF) are efficient in visual tracking, but their performance is badly affected by boundary effects. Focusing on this problem, the adaptive regularized correlation filters for visual tracking based on sample quality estimation are proposed. Firstly, the proposed algorithm adds spatial regularization matrix to the training process of the filters, and constructs color and gray histogram templates to compute the sample quality factor. Then, the regularization term adaptively changes with the sample quality coefficient, so that the samples of different quality are subject to different degrees of punishment. Then, by thresholding the sample quality coefficient, the tracking results and model update strategy are optimized. The experimental results on OTB2013 and OTB2015 indicate that, compared with the state-of-the-art tracking algorithm, the average success ratio of the proposed algorithm is the highest. The success ratio is raised by 9.3% and 9.9% contrasted with Spatially RegularizeD Correlation Filters(SRDCF) algorithm respectively on OTB2013 and OTB2015.
  • loading
  • SMEULDERS A W M, CHU D M, CUCCHIARA R, et al. Visual tracking: An experimental survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1442–1468. doi: 10.1109/TPAMI.2013.230
    WANG Naiyan, SHI Jianping, YEUNG D Y, et al. Understanding and diagnosing visual tracking systems[C]. Proceedings of IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 3101–3109.
    黄立勤, 朱飘. 车载视频下改进的核相关滤波跟踪算法[J]. 电子与信息学报, 2018, 40(8): 1887–1894. doi: 10.11999/JEIT171109

    HUANG Liqin and ZHU Piao. Improved kernel correlation filtering tracking for vehicle video[J]. Journal of Electronics &Information Technology, 2018, 40(8): 1887–1894. doi: 10.11999/JEIT171109
    BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2544–2550.
    HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583–596. doi: 10.1109/TPAMI.2014.2345390
    FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627–1645. doi: 10.1109/TPAMI.2009.167
    DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1090–1097.
    ZHANG Kaihua, ZHANG Lei, LIU Qingshan, et al. Fast visual tracking via dense spatio-temporal context learning[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 127–141.
    MA Chao, HUANG Jiabin, YANG Xiaokang, et al. Hierarchical convolutional features for visual tracking[C]. IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 3074–2082.
    NAM H and HAN B. Learning multi-domain convolutional neural networks for visual tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 4293–4302.
    BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional siamese networks for object tracking[C]. Computer Vision – ECCV 2016 Workshops, Amsterdam, the Netherlands, 2016: 850–865.
    DANELLJAN M, ROBINSON A, KHAN F S, et al. Beyond correlation filters: Learning continuous convolution operators for visual tracking[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 472–488.
    MA Chao, YANG Xiaokang, ZHANG Chongyang, et al. Long-term correlation tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 5388–5396.
    DANELLJAN M, HAGER G, KHAN F S, et al. Discriminative scale space tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8): 1561–1575. doi: 10.1109/TPAMI.2016.2609928
    LI Feng, YAO Yingjie, LI Peihua, et al. Integrating boundary and center correlation filters for visual tracking with aspect ratio variation[C]. IEEE International Conference on Computer Vision Workshops, Venice, Italy, 2017: 2001–2009.
    WANG Xin, HOU Zhiqiang, YU Wangsheng, et al. Online scale adaptive visual tracking based on multilayer convolutional features[J]. IEEE Transactions on Cybernetics, 2019, 49(1): 146–158. doi: 10.1109/TCYB.2017.2768570
    DANELLJAN M, HÄGER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking[C]. IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 4310–4318.
    LI Feng, TIAN Cheng, ZUO Wangmeng, et al. Learning spatial-temporal regularized correlation filters for visual tracking[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4904–4913.
    毕笃彦, 库涛, 查宇飞, 等. 基于颜色属性直方图的尺度目标跟踪算法研究[J]. 电子与信息学报, 2016, 38(5): 1099–1106. doi: 10.11999/JEIT150921

    BI Duyan, KU Tao, ZHA Yufei, et al. Scale-adaptive Object tracking based on color names histogram[J]. Journal of Electronics &Information Technology, 2016, 38(5): 1099–1106. doi: 10.11999/JEIT150921
    WU Yi, LIM J, and YANG M H. Online object tracking: A benchmark[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 2411–2418.
    WU Yi, LIM J, and YANG M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834–1848. doi: 10.1109/TPAMI.2014.2388226
    MA Chao, HUANG Jiabin, YANG Xiaokang, et al. Hierarchical convolutional features for visual tracking[C]. Proceedings of IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 3074–3082.
    WANG Lijun, OUYANG Wanli, WANG Xiaogang, et al. STCT: sequentially training convolutional networks for visual tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1373–1381.
    HONG S, YOU T, KWAK S, et al. Online tracking by learning discriminative saliency map with convolutional neural network[C]. The 32nd International Conference on Machine Learning, Lille, France, 2015: 597–606.
    GAO Jin, LING Haibin, HU Weiming, et al. Transfer learning based visual tracking with Gaussian processes regression[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 188–203.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article views (3180) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return