Advanced Search
Volume 42 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
Fengshou HE, You HE, Zhunga LIU, Cong’an XU. Research and Development on Applications of Convolutional Neural Networks of Radar Automatic Target Recognition[J]. Journal of Electronics & Information Technology, 2020, 42(1): 119-131. doi: 10.11999/JEIT180899
Citation: Fengshou HE, You HE, Zhunga LIU, Cong’an XU. Research and Development on Applications of Convolutional Neural Networks of Radar Automatic Target Recognition[J]. Journal of Electronics & Information Technology, 2020, 42(1): 119-131. doi: 10.11999/JEIT180899

Research and Development on Applications of Convolutional Neural Networks of Radar Automatic Target Recognition

doi: 10.11999/JEIT180899
Funds:  The National Natural Science Foundation of China (61672431, 61790550, 91538201)
  • Received Date: 2018-09-18
  • Rev Recd Date: 2019-02-18
  • Available Online: 2019-03-21
  • Publish Date: 2020-01-21
  • Automatic Target Recognition(ATR) is an important research area in the field of radar information processing. Because the deep Convolution Neural Network(CNN) does not need to carry out feature engineering and the performance of image classification is superior, it attracts more and more attention in the field of radar automatic target recognition. The application of CNN to radar image processing is reviewed in this paper. Firstly, the related knowledges including the characteristics of the radar image is introduced, and the limitations of traditional radar automatic target recognition methods are pointed out. The principle, composition, development of CNN and the field of computer vision are introduced. Then, the research status of CNN in radar automatic target recognition is provided. The detection and recognition method of SAR image are presented in detail. The challenge of radar automatic target recognition is analyzed. Finally, the new theory and model of convolution neural network, the new imaging technology of radar and the application to complex environments in the future are prospected.

  • loading
  • KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. Imagenet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105.
    CHENG Gong, HAN Junwei, and LU Xiaoqiang. Remote sensing image scene classification: benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10): 1865–1883. doi: 10.1109/JPROC.2017.2675998
    陈小龙, 关键, 何友, 等. 高分辨稀疏表示及其在雷达动目标检测中的应用[J]. 雷达学报, 2017, 6(3): 239–251. doi: 10.12000/JR16110

    CHEN Xiaolong, GUAN Jian, HE You, et al. High-resolution sparse representation and its applications in radar moving target detection[J]. Journal of Radars, 2017, 6(3): 239–251. doi: 10.12000/JR16110
    BALL J E, ANDERSON D T, and CHAN C S. Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community[J]. Journal of Applied Remote Sensing, 2017, 11(4): 042609. doi: 10.1117/1.JRS.11.042609
    PEI Jifang, HUANG Yulin, HUO Weibo, et al. SAR automatic target recognition based on multiview deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2196–2210. doi: 10.1109/tgrs.2017.2776357
    GOODFELLOW I, BENGIO Y, and COURVILLE A. Deep Learning[M]. Cambridge, Massachusetts: MIT Press, 2016.
    LECUN Yann, BOTTOU Léon, BENGIO Yoshua, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791
    RUSSAKOVSKY O, DENG Jia, SU Hao, et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211–252. doi: 10.1007/s11263-015-0816-y
    ZEILER M D and FERGUS R. Visualizing and understanding convolutional networks[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 818–833.
    SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9.
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. http://arxiv.org/abs/1409.1556, 2014.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[EB/OL]. https://arxiv.org/abs/1709.01507, 2017.
    许强, 李伟, LOUMBI P. 深度卷积神经网络在SAR自动目标识别领域的应用综述[J]. 电讯技术, 2018, 58(1): 106–112. doi: 10.3969/j.issn.1001-893x.2018.01.019

    XU Qiang, LI Wei, and LOUMBI P. Applications of Deep convolutional neural network in SAR automatic target recognition: a summarization[J]. Telecommunication Engineering, 2018, 58(1): 106–112. doi: 10.3969/j.issn.1001-893x.2018.01.019
    苏宁远, 陈小龙, 关键, 等. 基于卷积神经网络的海上微动目标检测与分类方法[J]. 雷达学报, 2018, 7(5): 565–574. doi: 10.12000/JR18077

    SU Ningyuan, CHEN Xiaolong, GUAN Jian, et al. Detection and classification of maritime target with micro-motion based on CNNs[J]. Journal of Radars, 2018, 7(5): 565–574. doi: 10.12000/JR18077
    杜兰, 刘彬, 王燕, 等. 基于卷积神经网络的SAR图像目标检测算法[J]. 电子与信息学报, 2016, 38(12): 3018–3025. doi: 10.11999/JEIT161032

    DU Lan, LIU Bin, WANG Yan, et al. Target detection method based on convolutional neural network for SAR image[J]. Journal of Electronics &Information Technology, 2016, 38(12): 3018–3025. doi: 10.11999/JEIT161032
    GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 346–361.
    GIRSHICK R. Fast R-CNN[C]. The IEEE international Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448.
    REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 91–99.
    DAI Jifeng, LI Yi, HE Kaiming, et al. R-FCN: Object detection via region-based fully convolutional networks[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 379–387.
    KONG Tao, YAO Anbang, CHEN Yurong, et al. Hypernet: Towards accurate region proposal generation and joint object detection[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 845–853.
    LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944.
    HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]. The 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980–2988.
    WANG Sifei, CUI Zongyong, and CAO Zongjie. Target recognition in large scene SAR images based on region proposal regression[C]. The 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, USA, 2017: 3297–3300.
    LI Jianwei, QU Changwen, and SHAO Jiaqi. Ship detection in SAR images based on an improved faster R-CNN[C]. The 2017 SAR in Big Data Era: Models, Methods and Applications, Beijing, China, 2017: 1–6.
    KANG Miao, LENG Xiangguang, LIN Zhao, et al. A modified faster R-CNN based on CFAR algorithm for SAR ship detection[C]. The 2017 International Workshop on Remote Sensing with Intelligent Processing, Shanghai, China, 2017: 1–4.
    KANG Miao, JI Kefeng, LENG Xiangguang, et al. Contextual region-based convolutional neural network with multilayer fusion for SAR ship detection[J]. Remote Sensing, 2017, 9(8): 860. doi: 10.3390/rs9080860
    JIAO Jiao, ZHANG Yue, SUN Hao, et al. A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection[J]. IEEE Access, 2018, 6: 20881–20896. doi: 10.1109/ACCESS.2018.2825376
    ZHONG Yanfei, HAN Xiaobing, and ZHANG Liangpei. Multi-class geospatial object detection based on a position-sensitive balancing framework for high spatial resolution remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 138: 281–294. doi: 10.1016/j.isprsjprs.2018.02.014
    REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788.
    LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37.
    WANG Yuanyuan, WANG Chao, ZHANG Hong, et al. Combing single shot multibox detector with transfer learning for ship detection using Chinese Gaofen-3 images[C]. The 2017 Progress in Electromagnetics Research Symposium - Fall, Singapore, 2018: 712–716.
    WANG Yuanyuan, WANG Chao, and ZHANG Hong. Combining a single shot multibox detector with transfer learning for ship detection using sentinel-1 SAR images[J]. Remote Sensing Letters, 2018, 9(8): 780–788. doi: 10.1080/2150704X.2018.1475770
    KONG Tao, SUN Fuchun, YAO Anbang, et al. Ron: Reverse connection with objectness prior networks for object detection[C]. The 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 5244–5252.
    CUI Zongyong, DANG Sihang, CAO Zongjie, et al. SAR target recognition in large scene images via region-based convolutional neural networks[J]. Remote Sensing, 2018, 10(5): 776. doi: 10.3390/rs10050776
    NI Jiacheng and XU Yuelei. SAR automatic target recognition based on a visual cortical system[C]. The 6th International Congress on Image and Signal Processing, Hangzhou, China, 2013: 778–782.
    CHEN Sizhe and WANG Haipeng. SAR target recognition based on deep learning[C]. The 2014 International Conference on Data Science and Advanced Analytics, Shanghai, China, 2014: 541–547.
    WAGNER S. Combination of convolutional feature extraction and support vector machines for radar ATR[C]. The 17th International Conference on Information Fusion, Salamanca, Spain, 2014: 1–6.
    WANG Haipeng, CHEN Sizhe, XU Feng, et al. Application of deep-learning algorithms to MSTAR data[C]. The 2015 IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 2015: 3743–3745.
    WAGNER S. Morphological component analysis in SAR images to improve the generalization of ATR systems[C]. The 3rd International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing, Pisa, Italy, 2015: 46–50.
    SCHWEGMANN C P, KLEYNHANS W, SALMON B P, et al. Very deep learning for ship discrimination in Synthetic Aperture Radar imagery[C]. The 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 104–107.
    CHO J H and PARK C G. Additional feature CNN based automatic target recognition in SAR image[C]. The 40th Asian Conference on Defence Technology, Tokyo, Japan, 2017: 1–4.
    LIN Zhao, JI Kefeng, KANG Miao, et al. Deep convolutional highway unit network for SAR target classification with limited labeled training data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(7): 1091–1095. doi: 10.1109/lgrs.2017.2698213
    HE Hao, WANG Shicheng, YANG Dongfang, et al. SAR target recognition and unsupervised detection based on convolutional neural network[C]. The 2017 Chinese Automation Congress, Jinan, China, 2017: 435–438.
    田壮壮, 占荣辉, 胡杰民, 等. 基于卷积神经网络的SAR图像目标识别研究[J]. 雷达学报, 2016, 5(3): 320–325. doi: 10.12000/JR16037

    TIAN Zhuangzhuang, ZHAN Ronghui, HU Jiemin, et al. SAR ATR based on convolutional neural network[J]. Journal of Radars, 2016, 5(3): 320–325. doi: 10.12000/JR16037
    CHEN Sizhe, WANG Haipeng, XU Feng, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806–4817. doi: 10.1109/tgrs.2016.2551720
    WILMANSKI M, KREUCHER C, and LAUER J. Modern approaches in deep learning for SAR ATR[J]. SPIE, 2016, 9843: 98430N. doi: 10.1117/12.2220290
    赵娟萍, 郭炜炜, 柳彬, 等. 基于概率转移卷积神经网络的含噪标记SAR图像分类[J]. 雷达学报, 2017, 6(5): 514–523. doi: 10.12000/JR16140

    ZHAO Juanping, GUO Weiwei, LIU Bin, et al. Convolutional neural network-based SAR image classification with noisy labels[J]. Journal of Radars, 2017, 6(5): 514–523. doi: 10.12000/JR16140
    AMRANI M and JIANG Feng. Deep feature extraction and combination for synthetic aperture radar target classification[J]. Journal of Applied Remote Sensing, 2017, 11(4): 042616. doi: 10.1117/1.Jrs.11.042616
    WANG Ning, WANG Yinghua, LIU Hongwei, et al. Feature-fused SAR target discrimination using multiple convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1695–1699. doi: 10.1109/lgrs.2017.2729159
    ZHENG Ce, JIANG Xue, and LIU Xingzhao. Generalized synthetic aperture radar automatic target recognition by convolutional neural network with joint use of two-dimensional principal component analysis and support vector machine[J]. Journal of Applied Remote Sensing, 2017, 11(4): 046007. doi: 10.1117/1.Jrs.11.046007
    刘晨, 曲长文, 周强, 等. 基于卷积神经网络迁移学习的SAR图像目标分类[J]. 现代雷达, 2018, 40(3): 38–42. doi: 10.16592/j.cnki.1004-7859.2018.03.009

    LIU Chen, QU Changwen, ZHOU Qiang, et al. SAR image target classification based on convolutional neural network transfer learning[J]. Modern Radar, 2018, 40(3): 38–42. doi: 10.16592/j.cnki.1004-7859.2018.03.009
    LI Xuan, LI Chunsheng, WANG Pengbo, et al. SAR ATR based on dividing CNN into CAE and SNN[C]. The 5th IEEE Asia-Pacific Conference on Synthetic Aperture Radar, Singapore, 2015: 676–679.
    李松, 魏中浩, 张冰尘, 等. 深度卷积神经网络在迁移学习模式下的SAR目标识别[J]. 中国科学院大学学报, 2018, 35(1): 75–83. doi: 10.7523/j.issn.2095-6134.2018.01.010

    LI Song, WEI Zhonghao, ZHANG Bingchen, et al. Target recognition using the transfer learning-based deep convolutional neural networks for SAR images[J]. Journal of University of Chinese Academy of Sciences, 2018, 35(1): 75–83. doi: 10.7523/j.issn.2095-6134.2018.01.010
    ØDEGAARD N, KNAPSKOG A O, COCHIN C, et al. Classification of ships using real and simulated data in a convolutional neural network[C]. The 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–6.
    KARABAYIR O, YUCEDAG O M, KARTAL M Z, et al. Convolutional neural networks-based ship target recognition using high resolution range profiles[C]. The 18th International Radar Symposium, Prague, Czech Republic, 2017.
    BENTES C, VELOTTO D, and LEHNER S. Target classification in oceanographic SAR images with deep neural networks: Architecture and initial results[C]. The 2015 IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 2015: 3703–3706.
    WANG Zhaocheng, DU Lan, WANG Fei, et al. Multi-scale target detection in SAR image based on visual attention model[C]. The 5th IEEE Asia-Pacific Conference on Synthetic Aperture Radar, Singapore, 2015: 704–709.
    YUAN Lele. A time-frequency feature fusion algorithm based on neural network for HRRP[J]. Progress in Electromagnetics Research, 2017, 55: 63–71. doi: 10.2528/PIERM16123002
    BENGIO Y, MESNARD T, FISCHER A, et al. STDP-compatible approximation of backpropagation in an energy-based model[J]. Neural Computation, 2017, 29(3): 555–577. doi: 10.1162/NECO_a_00934
    LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
    HOWARD A G, ZHU Menglong, CHEN Bo, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[EB/OL]. http://arxiv.org/abs/1704.04861, 2017.
    HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2261–2269.
    GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(6)

    Article Metrics

    Article views (6933) PDF downloads(970) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return