Advanced Search
Volume 41 Issue 8
Aug.  2019
Turn off MathJax
Article Contents
Guoce HUANG, Guisheng WANG, Qinghua REN, Shufu DONG, Weiting GAO, Shuai WEI. Adaptive Recognition Method for Unknown Interference Based on Hilbert Signal Space[J]. Journal of Electronics & Information Technology, 2019, 41(8): 1916-1923. doi: 10.11999/JEIT180891
Citation: Guoce HUANG, Guisheng WANG, Qinghua REN, Shufu DONG, Weiting GAO, Shuai WEI. Adaptive Recognition Method for Unknown Interference Based on Hilbert Signal Space[J]. Journal of Electronics & Information Technology, 2019, 41(8): 1916-1923. doi: 10.11999/JEIT180891

Adaptive Recognition Method for Unknown Interference Based on Hilbert Signal Space

doi: 10.11999/JEIT180891
Funds:  The National Natural Science Foundation of China (61701521), The Postdoctoral Science Foundation of China (2016M603044), The Shaanxi Province Natural Science Foundation (2018JQ6074)
  • Received Date: 2018-09-18
  • Rev Recd Date: 2019-03-26
  • Available Online: 2019-04-23
  • Publish Date: 2019-08-01
  • In order to solve the problem of classification and recognition of unknown interference types under large samples, an adaptive recognition method for unknown interference based on signal feature space is proposed. Firstly, the interference signal is processed and the interference signal feature space is established with the Hilbert signal space theory. Then the projection theorem is used to approximate the unknown interference. The classification algorithm based on signal feature space with Probabilistic Neural Network (PNN) is proposed, and the processing flow of unknown interference classifier is designed. The simulation results show that compared with two kinds of traditional methods, the proposed method improves the classification accuracy of the known interference by 12.2% and 2.8% respectively. The optimal approximation effect of the unknown interference varies linearly with the power intensity in the condition, and the overall recognition rate of the designed classifier reaches 91.27% in the various types of interference satisfying the optimal approximation, and the speed of processing interference recognition is improved significantly. When the signal-to-noise ratio reaches 4 dB, the accuracy of unknown interference recognition is more than 92%.
  • loading
  • POISEL R A. Modern Communications Jamming Principles and Techniques[M]. Boston: Artech House, 2011: 279–288.
    HU Su, BI Guoan, GUAN Yongliang, et al. TDCS-based cognitive radio networks with multiuser interference avoidance[J]. IEEE Transactions on Communications, 2013, 61(12): 4828–4835. doi: 10.1109/TCOMM.2013.111313.130261
    ERHAN D, SZEGEDY C, TOSHEV A, et al. Scalable object detection using deep neural networks[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2155–2162. doi: 10.1109/CVPR.2014.276.
    OQUAB M, BOTTOU L, LAPTEV I, et al. Learning and transferring mid-level image representations using convolutional neural networks[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1717–1724. doi: 10.1109/CVPR.2014.222.
    WATT N and DU PLESSIS M C. Dropout algorithms for recurrent neural networks[C]. The Annual Conference of the South African Institute of Computer Scientists and Information Technologists, Port Elizabeth, South Africa, 2018: 72–78. doi: 10.1145/3278681.3278691.
    WANG Shangxing, LIU Hanpeng, GOMES P H, et al. Deep reinforcement learning for dynamic multichannel access in wireless networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(2): 257–265. doi: 10.1109/TCCN.2018.2809722
    张彪, 闫晓鹏, 栗苹, 等. 基于支持向量机的无线电引信抗扫频式干扰研究[J]. 兵工学报, 2016, 37(4): 635–640. doi: 10.3969/j.issn.1000-1093.2016.04.009

    ZHANG Biao, YAN Xiaopeng, LI Ping, et al. Research on anti-frequency sweeping jamming of radio fuze based on support vector machine[J]. Acta Armamentarii, 2016, 37(4): 635–640. doi: 10.3969/j.issn.1000-1093.2016.04.009
    王国宏, 白杰, 张翔宇, 等. 基于FRFT域特征差异的压制干扰检测与分类算法[J]. 北京航空航天大学学报, 2018, 44(6): 1124–1132. doi: 10.13700/j.bh.1001-5965.2017.0423

    WANG Guohong, BAI Jie, ZHANG Xiangyu, et al. Detection and classification algorithm of suppression interference based on characteristic differences of FRFT domain[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1124–1132. doi: 10.13700/j.bh.1001-5965.2017.0423
    刘明骞, 李兵兵, 曹超凤, 等. 认知无线电中非高斯噪声下数字调制信号识别方法[J]. 通信学报, 2014, 35(1): 82–88. doi: 10.3969/j.issn.1000-436x.2014.01.010

    LIU Mingqian, LI Bingbing, CAO Chaofeng, et al. Recognition method of digital modulation signals over non-Gaussian noise in cognitive radio[J]. Journal on Communications, 2014, 35(1): 82–88. doi: 10.3969/j.issn.1000-436x.2014.01.010
    YANG Zeyi, TAO Ran, WANG Yue, et al. A novel multi-carrier order division multi-access communication system based on TDCS with fractional Fourier transform scheme[J]. Wireless Personal Communications, 2014, 79(2): 1301–1320. doi: 10.1007/s11277-014-1931-8
    KUZOVNIKOV A V. Study of the methods for developing jamming-immune communications systems with the use of wavelet-modulated signals[J]. Journal of Communications Technology and Electronics, 2014, 59(1): 61–70. doi: 10.1134/S1064226914010069
    王桂胜, 任清华, 姜志刚, 等. 基于信号特征空间的TDCS干扰分类识别[J]. 系统工程与电子技术, 2017, 39(9): 1950–1958. doi: 10.3969/j.issn.1001-506X.2017.09.06

    WANG Guisheng, REN Qinghua, JIANG Zhigang, et al. Jamming classification and recognition in transform domain communication system based on signal feature space[J]. Systems Engineering and Electronics, 2017, 39(9): 1950–1958. doi: 10.3969/j.issn.1001-506X.2017.09.06
    TAO Chao, PAN Hongbo, LI Yansheng, et al. Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12): 2438–2442. doi: 10.1109/LGRS.2015.2482520
    郭立民, 寇韵涵, 陈涛, 等. 基于栈式稀疏自编码器的低信噪比下低截获概率雷达信号调制类型识别[J]. 电子与信息学报, 2018, 40(4): 875–881. doi: 10.11999/JEIT170588

    GUO Limin, KOU Yunhan, CHEN Tao, et al. Low probability of intercept radar signal recognition based on stacked sparse auto-encoder[J]. Journal of Electronics &Information Technology, 2018, 40(4): 875–881. doi: 10.11999/JEIT170588
    DONOHO D L, TSAIG Y, DRORI I, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2012, 58(2): 1094–1121. doi: 10.1109/TIT.2011.2173241
    王磊, 周乐囡, 姬红兵, 等. 一种面向信号分类的匹配追踪新方法[J]. 电子与信息学报, 2014, 36(6): 1299–1306. doi: 10.3724/SP.J.1146.2013.00942

    WANG Lei, ZHOU Lenan, JI Hongbing, et al. A new matching pursuit algorithm for signal classification[J]. Journal of Electronics &Information Technology, 2014, 36(6): 1299–1306. doi: 10.3724/SP.J.1146.2013.00942
    GONZÁLEZ-CAMACHO J M, CROSSA J, PÉREZ-RODRÍGUEZ P, et al. Genome-enabled prediction using probabilistic neural network classifiers[J]. BMC Genomics, 2016, 17: 208. doi: 10.1186/s12864-016-2553-1
    张国亮, 杨春玲, 王暕来. 基于优化概率神经网络和红外多光谱融合的大气层外空间弹道目标识别[J]. 电子与信息学报, 2014, 36(4): 896–902. doi: 10.3724/SP.J.1146.2013.00623

    ZHANG Guoliang, YANG Chunling, and WANG Jianlai. Discrimination of exo-atmospheric targets based on optimization of probabilistic neural network and IR multispectral fusion[J]. Journal of Electronics &Information Technology, 2014, 36(4): 896–902. doi: 10.3724/SP.J.1146.2013.00623
    GIRYES R and NEEDELL D. Near oracle performance and block analysis of signal space greedy methods[J]. Journal of Approximation Theory, 2015, 194: 157–174. doi: 10.1016/j.jat.2015.02.007
    GIRYES R and NEEDELL D. Greedy signal space methods for incoherence and beyond[J]. Applied and Computational Harmonic Analysis, 2015, 39(1): 1–20. doi: 10.1016/j.acha.2014.07.004
    胡广书. 数字信号处理—理论、算法与实现[M]. 第3版, 北京: 清华大学出版社, 2012: 169–175.

    HU Guangshu. Digital Signal Processing—Theory, Algorithm and Implementation[M]. 3rd ed, Beijing: Tsinghua University Press, 2012: 169–175.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (2055) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return