Citation: | Hui ZHAO, Jing ZHANG, Le ZHANG, Yingli LIU, Tianqi ZHANG. Compressed Sensing Image Restoration Based on Non-local Low Rank and Weighted Total Variation[J]. Journal of Electronics & Information Technology, 2019, 41(8): 2025-2032. doi: 10.11999/JEIT180828 |
CANDES E J, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489–509. doi: 10.1109/TIT.2005.862083
|
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
|
石光明, 刘丹华, 高大化, 等. 压缩感知理论及其研究进展[J]. 电子学报, 2009, 37(5): 1070–1081. doi: 10.3321/j.issn:0372-2112.2009.05.028
SHI Guangming, LIU Danhua, GAO Dahua, et al. Advances in theory and application of compressed sensing[J]. Acta Electronica Sinica, 2009, 37(5): 1070–1081. doi: 10.3321/j.issn:0372-2112.2009.05.028
|
ZHANG Jian, ZHAO Debin, ZHAO Chen, et al. Compressed sensing recovery via collaborative sparsity[C]. 2012 Data Compression Conference, Snowbird, USA, 2012: 287–296.
|
HE Guiqing, XING Siyuan, DONG Dandan, et al. Panchromatic and multi-spectral image fusion method based on two-step sparse representation and wavelet transform[C]. The 9th Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, Kuala Lumpur, Malaysia, 2017: 259–262.
|
RUBINSTEIN R, BRUCKSTEIN A M, and ELAD M. Dictionaries for sparse representation modeling[J]. Proceedings of the IEEE, 2010, 98(6): 1045–1057. doi: 10.1109/JPROC.2010.2040551
|
HONG Tao and ZHU Zhihui. Online learning sensing matrix and sparsifying dictionary simultaneously for compressive sensing[J]. Signal Processing, 2018, 153: 188–196. doi: 10.1016/j.sigpro.2018.05.021
|
EGIAZARIAN K, FOI A, and KATKOVNIK V. Compressed sensing image reconstruction via recursive spatially adaptive filtering[C]. 2007 IEEE International Conference on Image Processing, San Antonio, USA, 2007: I-549-I-552.
|
BUADES A, COLL B, and MOREL J M. A review of image denoising algorithms, with a new one[J]. Multiscale Modeling & Simulation, 2005, 4(2): 490–530. doi: 10.1137/040616024
|
LIU Hangfan, XIONG Ruiqin, ZHANG Xinfeng, et al. Nonlocal gradient sparsity regularization for image restoration[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(9): 1909–1921. doi: 10.1109/TCSVT.2016.2556498
|
YU Jun and DONG Shumin. Nonlocal variational method application for image denoising[C]. 2017 IEEE International Conference on Signal Processing, Communications and Computing, Xiamen, China, 2017: 1–6.
|
DONG Weisheng, SHI Guangming, LI Xin, et al. Compressive sensing via nonlocal low-rank regularization[J]. IEEE Transactions on Image Processing, 2014, 23(8): 3618–3632. doi: 10.1109/TIP.2014.2329449
|
宋云, 李雪玉, 沈燕飞, 等. 基于非局部相似块低秩的压缩感知图像重建算法[J]. 电子学报, 2017, 45(3): 695–703. doi: 10.3969/j.issn.0372-2112.2017.03.029
SONG Yun, LI Xueyu, SHEN Yanfei, et al. Compressed sensing image reconstruction based on low rank of non-local similar patches[J]. Acta Electronica Sinica, 2017, 45(3): 695–703. doi: 10.3969/j.issn.0372-2112.2017.03.029
|
LIU Hangfan, XIONG Ruiqin, LIU Dong, et al. Low rank regularization exploiting intra and inter patch correlation for image denoising[C]. 2017 IEEE Visual Communications and Image Processing, USA, 2017: 1–4.
|
GU Shuhang, XIE Qi, MENG Deyu, et al. Weighted nuclear norm minimization and its applications to low level vision[J]. International Journal of Computer Vision, 2017, 121(2): 183–208. doi: 10.1007/s11263-016-0930-5
|
RUDIN L I, OSHER S, and FATEMI E. Nonlinear total variation based noise removal algorithms[C]. The 11th Annual International Conference of the Center for Nonlinear Studies on Experimental mathematics: Computational Issues in Nonlinear Science, Los Alamos, USA, 1992: 259–268.
|
LI Chengbo, YIN Wotao, and ZHANG Yin. TVAL3: TV minimization by augmented lagrangian and alternating direction algorithms[EB/OL]. http://www.caam.rice.edu/~optimization/L1/TVAL3/, 2013.
|
CHEN Qiang, MONTESINOS P, SUN Quansen, et al. Adaptive total variation denoising based on difference curvature[J]. Image and Vision Computing, 2010, 28(3): 298–306. doi: 10.1016/j.imavis.2009.04.012
|
ZHANG Jian, LIU Shaohui, XIONG Ruiqin, et al. Improved total variation based image compressive sensing recovery by nonlocal regularization[C]. 2013 IEEE International Symposium on Circuits and Systems, Beijing, China, 2013: 2836–2839.
|
CANDèS E J, WAKIN M B, and BOYD S P. Enhancing sparsity by reweighted
|
WANG Ting, NAKAMOTO K, ZHANG Heye, et al. Reweighted anisotropic total variation minimization for limited-angle CT reconstruction[J]. IEEE Transactions on Nuclear Science, 2017, 64(10): 2742–2760. doi: 10.1109/TNS.2017.2750199
|
LI Yan. Sparse hyperspectral unmixing combined L1/2 norm and reweighted total variation regularization[C]. The Ninth International Conference on Digital Image Processing, Hong Kong, China, 2017: 1042046.
|
BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016
|
ZHANG Mingli, DESROSIERS C, and ZHANG Caiming. Effective compressive sensing via reweighted total variation and weighted nuclear norm regularization[C]. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, LA, United States, 2017: 1802–1806.
|