Advanced Search
Volume 41 Issue 8
Aug.  2019
Turn off MathJax
Article Contents
Ming YIN, Wenjie WANG, Xuanyu ZHANG, Jijiao JIANG. A Maximal Frequent Itemsets Mining Algorithm Based on Adjacency Table[J]. Journal of Electronics & Information Technology, 2019, 41(8): 2009-2016. doi: 10.11999/JEIT180692
Citation: Ming YIN, Wenjie WANG, Xuanyu ZHANG, Jijiao JIANG. A Maximal Frequent Itemsets Mining Algorithm Based on Adjacency Table[J]. Journal of Electronics & Information Technology, 2019, 41(8): 2009-2016. doi: 10.11999/JEIT180692

A Maximal Frequent Itemsets Mining Algorithm Based on Adjacency Table

doi: 10.11999/JEIT180692
Funds:  Ministry of Education Humanities and Social Science Foundation (16YJA630068, 18YJA630043), Aeronautical Science Fund of China (2016ZG53071), Shaanxi Natural Science Basic Research Project (2018JM7008), Shaanxi Social Science Foundation Project (2018S28), Graduate Student Seed Fund Project of Northwestern Polytechnical University (ZZ2018222)
  • Received Date: 2018-07-08
  • Rev Recd Date: 2019-05-17
  • Available Online: 2019-05-29
  • Publish Date: 2019-08-01
  • To solve the problems of Apriori algorithm and FP-Growth algorithm in the process of mining the maximal frequent itemsets, which refer to inefficient operation, high memory consumption, difficulty in adapting to the process of dense datasets, and affecting the time-effectiveness of large data value mining, this paper proposes a maximal frequent itemsets mining algorithm based on adjacency table. The algorithm only needs to traverse the database once and adopts the hash table to store the adjacency table, which reduces the memory consumption. Theoretical analysis and experimental results show that the algorithm has lower time and space complexity and improves the mining rate of maximal frequent itemsets, especially when dealing with dense datasets.
  • loading
  • WU Xindong, KUMAR V, QUINLAN J R, et al. Top 10 algorithms in data mining[J]. Knowledge and Information Systems, 2008, 14(1): 1–37. doi: 10.1007/s10115-007-0114-2
    FASIH H and SHAHRAKI M H N. Incremental mining maximal frequent patterns from univariate uncertain data[J]. Knowledge-Based Systems, 2018, 152: 40–50. doi: 10.1016/j.knosys.2018.04.001
    易彤, 徐宝文, 吴方君. 一种基于FP树的挖掘关联规则的增量更新算法[J]. 计算机学报, 2004, 27(5): 703–710. doi: 10.3321/j.issn:0254-4164.2004.05.017

    YI Tong, XU Baowen, and WU Fangjun. A FP-tree based incremental updating algorithm for mining association rules[J]. Chinese Journal of Computers, 2004, 27(5): 703–710. doi: 10.3321/j.issn:0254-4164.2004.05.017
    陈安龙, 唐常杰, 陶宏才, 等. 基于极大团和FP-Tree的挖掘关联规则的改进算法[J]. 软件学报, 2004, 15(8): 1198–1207. doi: 10.13328/j.cnki.jos.2004.08.012

    CHEN Anlong, TANG Changjie, TAO Hongcai, et al. An improved algorithm based on maximum clique and FP-Tree for mining association rules[J]. Journal of Software, 2004, 15(8): 1198–1207. doi: 10.13328/j.cnki.jos.2004.08.012
    BUI H, VO B, NGUYEN H, et al. A weighted N-list-based method for mining frequent weighted itemsets[J]. Expert Systems with Applications, 2018, 96: 388–405. doi: 10.1016/j.eswa.2017.10.039
    AGRAWAL R and SRIKANT R. Fast algorithms for mining association rules in large databases[C]. The 20th International Conference on Very Large Data Bases, San Francisco, 1994: 487–499.
    APILETTI D, BARALIS E, CERQUITELLI T, et al. Frequent itemsets mining for big data: A comparative analysis[J]. Big Data Research, 2017, 9: 67–83. doi: 10.1016/j.bdr.2017.06.006
    肖波, 徐前方, 蔺志青, 等. 可信关联规则及其基于极大团的挖掘算法[J]. 软件学报, 2008, 19(10): 2597–2610.

    XIAO Bo, XU Qianfang, LIN Zhiqing, et al. Credible association rule and its mining algorithm based on maximum clique[J]. Journal of Software, 2008, 19(10): 2597–2610.
    HAN Jiawei, PEI Jian, and YIN Yiwen. Mining frequent patterns without candidate generation[C]. The 2000 ACM SIGMOD International Conference on Management of Data, Dallas, 2000: 1–12. doi: 10.1145/342009.335372.
    KARIM R, COCHEZ M, BEYAN O D, et al. Mining maximal frequent patterns in transactional databases and dynamic data streams: A spark-based approach[J]. Information Sciences, 2018, 432: 278–300. doi: 10.1016/j.ins.2017.11.064
    吉根林, 杨明, 宋余庆, 等. 最大频繁项目集的快速更新[J]. 计算机学报, 2005, 28(1): 128–135. doi: 10.3321/j.issn:0254-4164.2005.01.016

    JI Genlin, YANG Ming, SONG Yuqing, et al. Fast updating maximum frequent itemsets[J]. Chinese Journal of Computers, 2005, 28(1): 128–135. doi: 10.3321/j.issn:0254-4164.2005.01.016
    宋余庆, 朱玉全, 孙志挥, 等. 基于FP-Tree的最大频繁项目集挖掘及更新算法[J]. 软件学报, 2003, 14(9): 1586–1592. doi: 10.13328/j.cnki.jos.2003.09.012

    SONG Yuqing, ZHU Yuquan, SUN Zhihui, et al. An algorithm and its updating algorithm based on FP-Tree for mining maximum frequent itemsets[J]. Journal of Software, 2003, 14(9): 1586–1592. doi: 10.13328/j.cnki.jos.2003.09.012
    VIJAYARANI S and SHARMILA S. Comparative analysis of association rule mining algorithms[C]. 2016 International Conference on Inventive Computation Technologies, Coimbatore, 2016: 1–6. doi: 10.1109/INVENTIVE.2016.7830203.
    LIU Li, YU Shuo, WEI Xiang, et al. An improved Apriori-based algorithm for friends recommendation in microblog[J]. International Journal of Communication Systems, 2018, 31(2): e3453. doi: 10.1002/dac.3453
    连志春, 伊凤新. 一种改进的频繁模式树生长算法[J]. 应用科技, 2008, 35(6): 47–51. doi: 10.3969/j.issn.1009-671X.2008.06.012

    LIAM Zhichun and YI Fengxin. An improved frequent pattern tree growth algorithm[J]. Applied Science and Technology, 2008, 35(6): 47–51. doi: 10.3969/j.issn.1009-671X.2008.06.012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (1990) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return