Advanced Search
Volume 39 Issue 1
Jan.  2017
Turn off MathJax
Article Contents
TANG Wenxuan, ZHANG Haochi, CUI Tiejun. Spoof Surface Plasmon Polariton and Its Applications to Microwave Frequencies[J]. Journal of Electronics & Information Technology, 2017, 39(1): 231-239. doi: 10.11999/JEIT160692
Citation: TANG Wenxuan, ZHANG Haochi, CUI Tiejun. Spoof Surface Plasmon Polariton and Its Applications to Microwave Frequencies[J]. Journal of Electronics & Information Technology, 2017, 39(1): 231-239. doi: 10.11999/JEIT160692

Spoof Surface Plasmon Polariton and Its Applications to Microwave Frequencies

doi: 10.11999/JEIT160692
Funds:

The National Natural Science Foundation of China (61571117, 61631007, 61401089, 61302018, 61501112, 61501117), The National Instrumentation Program (2013YQ- 200647), The 111 Project (111-2-05)

  • Received Date: 2016-07-04
  • Rev Recd Date: 2016-09-20
  • Publish Date: 2017-01-19
  • Spoof Surface Plasmon Polariton (SSPP), which possesses extraordinary ability of sub-wavelength- scaled field confinement, can be realized by an ultrathin corrugated metallic strip at microwave frequencies. Advantages of SSPP such as the high confinement, low loss, and controllable dispersion properties are analyzed in this paper. SSPP waveguide, a novel high-performance transmission line, is studied for its great potentials in modern integrated circuits. A series of reported applications for microwave circuits/devices are reviewed. In the end, future development of this technique is discussed.
  • loading
  • BARNES W L, DEREUX A, and EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424: 824-830. doi: 10.1038/nature01937.
    MAIER S A. Plasmonics: Fundamentals and Applications[M]. New York: Springer, 2007, Chapter 1.
    LIU N, WEN F, ZHAO Y, et al. Individual nanoantennas loaded with three-dimensional optical nanocircuits[J]. Nano Letters, 2013, 13(1): 142-147. doi: 10.1021/nl303689c.
    PENDRY J B, MARTIN-MORENO L, and GARCIA- VIDAL F J. Mimicking surface plasmons with structured surfaces[J]. Science, 2004, 305(5685): 847-848. doi: 10.1126/ science.1098999.
    A. P. HIBBINS A P, EVANS B R, and SAMBLES J R. Experimental verification of designer surface plasmons[J]. Science, 2005, 308(5722): 670-672. doi: 10.1126/science. 1109043.
    GARCIA-VIDAL F J, MARTIN-MORENO L, and PENDRY J B. Surfaces with holes in them: new plasmonic metamaterials[J]. Journal of Optics A: Pure and Applied Optics, 2005, 7(2): S97-S101. doi: 10.1088/1464-4258/7/2/ 013.
    MAIER S A, ANDREWS S R, MARTIN-MORENO L, et al. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires[J]. Physical Review Letters, 2006, 97(17): 176805(1-4). doi: 10.1103/ PhysRevLett.97.176805.
    CHEN Yongyao, SONG Zhenming, LI Yanfeng, et al. Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves[J]. Optics Express, 2006, 14(26): 13021-13029. doi: 10.1364/OE.14.013021.
    WILLAMS C R, ANDREW S R, MAIER S A, et al. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces[J]. Nature Photonics, 2008, 2(3): 175-179. doi: 10.1038/nphoton.2007.301.
    GAN Qiaoqiang, FU Zhan, DING Yujie, et al. Ultrawide- bandwidth slow-light system based on THz plasmonic graded metallic grating structures[J]. Physical Review Letters, 2008, 100(25): 256803(1-4). doi: 10.1103/PhysRevLett.100.256803.
    MORENO E, RODRIGO S G, BOZHEVOLNYI S I, et al. Guiding and focusing of electromagnetic fields with wedge plasmon polaritons[J]. Physical Review Letters, 2008, 100(2): 023901(1-4). doi: 10.1103/PhysRevLett.100.023901.
    NAGPAL P, LINQUIST N C, Oh S H, et al. Ultrasmooth patterned metals for plasmonics and metamaterials[J]. Science, 2009, 325(5940): 594-597. doi: 10.1126/science. 1174655.
    ZHOU Yongjin, JIANG Quan, and CUI Tiejun. Bidirectional bending splitter of designer surface plasmons[J]. Applied Physics Letters, 2011, 99(11): 111904(1-4). doi: 10.1063/ 1.3639277.
    LOCKYEAR M J, HIBBINS A P, and SAMBLES J R. Microwave surface-plasmon-like modes on thin metamaterials[J]. Physical Review Letters, 2009, 102(7): 073901(1-4). doi: 10.1103/PhysRevLett.102.073901.
    SHEN Xiaopeng, CUI Tiejun, MARTIN-CANO D, et al. Conformal surface plasmons propagating on ultrathin and flexible films[J]. Proceedings of the National Academy of Sciences of the USA, 2013, 110(1): 40-45. doi: 10.1073/pnas. 1210417110.
    WU J J. Subwavelength microwave guiding by periodically corrugated strip line[J]. Progress In Electromagnetics Research, 2010, 104: 113-123. doi: 10.2528/PIER10021202.
    LIU Xiaoyong, FENG Yijun, ZHU Bo, et al. High-order modes of spoof surface plasmonic wave transmission on thin metal film structure[J]. Optics Express, 2013, 21(23): 3155-3165. doi: 10.1364/OE.21.031155.
    ZHANG Wenxuan, ZHU Guiqiang, SUN Liguo, et al. Trapping of surface plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation[J]. Applied Physics Letters, 2015, 106(2): 021104(1-6). doi: 10.1063/1.4905675.
    LIANG Yuan, YU Hao, ZHANG Haochi, et al. On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS[J]. Scientific Reports, 2015, 5: 14853(1-13). doi: 10.1038/srep14853.
    ZHANG Haochi, ZHANG Qian, LIU Junfeng, et al. Smaller-loss planar SPP transmission line than conventional microstrip in microwave frequencies[J]. Scientific Reports, 2016, 6: 23396(1-10). doi: 10.1038/srep23396.
    SHEN Xiaopeng, and CUI Tiejun. Planar plasmonic metamaterial on a thin film with nearly zero thickness[J]. Applied Physics Letters, 2013, 102(21): 211909(1-4). doi: 10.1063/1.4808350.
    WU J J, HOU D J, LIU K X, et al. Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface plasmon polaritons[J]. Optics Express, 2014, 22(22): 26777-26787. doi: 10.1364/OE.22.026777.
    ZHANG Haochi, CUI Tiejun, ZHANG Qian, et al. Breaking the challenge of signal integrity using time-domain spoof surface plasmon polaritons[J]. ACS Photonics, 2015, 2(9): 1333-1340. doi: 10.1021/acsphotonics.5b00316.
    PAN Baicao, ZHAO Jie, LIAO Zhen, et al. Multi-layer topological transmissions of spoof surface plasmon polaritons[J]. Scientific Reports, 2016, 6: 22702(1-9). doi: 10.1038/srep22702.
    WANG K L and MITTLEMAN D M.Metal wires for terahertz wave guiding[J]. Nature, 2004, 432(7015): 376-379. doi: 10.1038/nature03040.
    WANG K L and MITTLEMAN D M. Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range[J]. Physical Review Letters, 2006, 96(15): 157401(1-4). doi: 10.1103/PhysRevLett.96.157401.
    SUN Shulin, HE Qiong, XIAO Shiyi, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426-431. doi: 10.1038/NMAT3292.
    WU Chenjun, CHENG Yongzhi, WANG Wenying, et al. Ultra-thin and polarization-independent phase gradient metasurface for high-efficiency spoof surface-plasmon- polariton coupling[J]. Applied Physics Express, 2015, 8(12): 122001(1-4). doi: 10.7567/APEX.8.122001.
    SUN Wujiong, HE Qiong, SUN Shulin, et al. High-efficiency surface plasmon meta-couplers: Concept and microwave- regime realizations[J]. Light-Science and Applications, 2016, 5: e16003(1-6). doi: 10.1038/lsa.2016.3.
    MA Huifeng, SHEN Xiaopeng, CHENG Qiang, et al. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons[J]. Laser and Photonics Reviews, 2014, 8(1): 146-151. doi: 10.1002/lpor.201300118.
    LIU Liangliang, LI Zhuo, XU Bingzheng, et al. High- efficiency transition between rectangular waveguide and domino plasmonic waveguide[J]. AIP Advances, 2015, 5(2): 027105(1-9). doi: 10.1063/1.4907879.
    GAO Xi, ZHOU Liang, YU Xingyang, et al. Ultra-wideband surface plasmonic Y-splitter[J]. Optics Express, 2015, 23(18): 23270-23277. doi: 10.1364/OE.23.023270.
    XU Junjun, YIN Jiayuan, ZHANG Haochi, et al. Compact feeding network for array radiations of spoof surface plasmon polaritons[J]. Scientific Reports, 2016, 6: 22692(1-7). doi: 10.1038/srep22692.
    ZHU Zhihong, GARCIA-ORTIZ C E, HAN Zhanghua, et al. Compact and broadband directional coupling and demultiplexing in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect[J]. Applied Physics Letters, 2013, 103(6): 061108(1-5). doi: 10.1063/1.4817860.
    XU Bingzheng, LI Zhuo, LIU Liangliang, et al. Tunable band-notched coplanar waveguide based on localized spoof surface plasmons[J]. Optics Letters, 2015, 40(20): 4683-4686. doi: 10.1364/OL.40.004683.
    GAO Xi, ZHOU Liang, LIAO Zhen, et al. An ultra-wideband surface plasmonic filter in microwave frequency[J]. Applied Physics Letters, 2014, 104(19): 191603(1-5). doi: 10.1063/ 1.4876962.
    PAN Baicao, LIAO Zhen, ZHAO Jie, et al. Controlling rejections of spoof surface plasmon polaritons using metamaterial particles[J]. Optics Express, 2014, 22(11): 13940-13950. doi: 10.1364/OE.22.013940.
    YIN Jiayuan, REN Jian, ZHANG Haochi, et al. Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure[J]. Scientific Reports, 2014, 5: 8165(1-5). doi: 10.1038/srep08165.
    ZHANG Qian, ZHANG Haochi, WU Han, et al. A hybrid circuit for spoof surface plasmons and spatial waveguide modes to reach controllable band-pass filters[J]. Scientific Reports, 2015, 5: 16531(1-9). doi: 10.1038/srep16531.
    LIU Xiaoyong, FENG Yijun, CHEN Ke, et al. Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures[J]. Optics Express, 2014, 22(17): 20107-20116. doi: 10.1364/OE.22.020107.
    GAO Xi, SHI Jinhui, SHEN Xiaopeng, et al. Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies[J]. Applied Physics Letters, 2013, 102(15): 151912(1-4). doi: 10.1063/ 1.4802739.
    BAI Xue, QU Shiwei, and YI Huan. Applications of spoof planar plasmonic waveguide to frequency-scanning circularly polarized patch array[J]. Journal of Physics D-Applied Physics, 2014, 47(32): 325101(1-7). doi: 10.1088/0022-3727/ 47/32/325101.
    WU Jinjei, WU Chienjang, SHEN Jianqi, et al. Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength metallic hollow blocks [J]. Scientific Reports, 2015, 5: 14461(1-10). doi: 10.1038/ srep14461.
    CAI Bengeng, LI Yunbo, MA Huifeng, et al. Leaky-wave radiations by modulating surface impedance on subwavelength corrugated metal structures[J]. Scientific Reports, 2016, 6: 23974(1-7). doi: 10.1038/srep23974.
    WAN Xiang, YIN Jiayuan, ZHANG Haochi, et al. Dynamic excitation of spoof surface plasmon polaritons[J]. Applied Physics Letters, 214, 105(8): 083502(1-4). doi: 10.1063/ 1.4894219.
    XU Jie, ZHANG Haochi, TANG Wenxuan, et al. Transmission-spectrum-controllable spoof surface plasmon polaritons using tunable metamaterial particles[J]. Applied Physics Letters, 2016, 108(19): 191906(1-5). doi: 10.1063/1. 4950701.
    ZHANG Haochi, LIU Shuo, SHEN Xiaopeng, et al. Broadband amplification of spoof surface plasmon polaritons at microwave frequencies[J]. Laser and Photonics Reviews, 2015, 9(1): 83-90. doi: 10.1002/lpor.201400131.
    ZHANG Haochi, FAN Yifeng, GUO Jian, et al. Second- harmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials[J]. ACS Photonics, 2016, 3(1): 139-146. doi: 10.1021/acsphotonics.5b00580.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2164) PDF downloads(977) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return