Advanced Search
Volume 39 Issue 1
Jan.  2017
Turn off MathJax
Article Contents
XIA Xiaohu, LIU Ming. Unified Constrained Cascade Interactive Multi-model Filter and Its Application in Tracking of Manoeuvring Target[J]. Journal of Electronics & Information Technology, 2017, 39(1): 117-123. doi: 10.11999/JEIT160384
Citation: XIA Xiaohu, LIU Ming. Unified Constrained Cascade Interactive Multi-model Filter and Its Application in Tracking of Manoeuvring Target[J]. Journal of Electronics & Information Technology, 2017, 39(1): 117-123. doi: 10.11999/JEIT160384

Unified Constrained Cascade Interactive Multi-model Filter and Its Application in Tracking of Manoeuvring Target

doi: 10.11999/JEIT160384
Funds:

The National Natural Science Fundation of China (61340016), Anhui Province Natural Science Foundation (1408085MF134), Anhui Province Youth Leading Talents and Visiting Scholar Key Scheme (gxfxZD2016224)

  • Received Date: 2016-04-20
  • Rev Recd Date: 2016-12-06
  • Publish Date: 2017-01-19
  • A novel unified cascade constrained interactive multi-model Kalman filter is put forward. The filter is composed of two cascade connected filters, a standard interactive-multiple-model and a unified constrained filter. The latter is effective for everyone in model set of controlled plant and refines the estimation of the former using smoothly constraint Kalman algorithm. Numerical simulation and flying experiments are made for maneuvering target tracking and lower estimated error and covariance are achieved by the unified cascade constrained interactive multi-model Kalman filter compared with conventional interactive multi-model filter. The added computation cost is reasonable and acceptable. The paper is valuable reference for maneuvering target tracking and interactive multi-model filter.
  • loading
  • YANG Jinlong, JI Hongling, and FAN Zhenhua. Probability hypothesis density filter based on strong tracking MIE for multiple maneuvering targets tracking[J]. International Journal of Control, Automation and Systems, 2013, 11(2): 306-316.
    LI Bo. Multiple-model Rao-Blackwellized particle CPHD filter for multi-target tracking[J]. Nonlinear Dynamics, 2015, 79(3): 2133-2143.
    LIU Meiqin, ZHANG Di, and ZHANG Senlin. Bearing-only target tracking using cubature rauch-tung-striebel smoother [C]. 34th Chinese Control Conference, Hangzhou, China, 2015: 4734-4738.
    EVERS C, MOORE A H, NAYLOR P A, et al. Bearing- only acoustic tracking of moving speakers for robot audition [C]. IEEE International Conference on Digital Signal Processing, Singapore, 2015: 1206-1210.
    BECKER S, MUNCH D, KIERITZ H, et al. Detecting abandoned objects using interacting multiple models[J]. SPIE, 2015, 96520. doi: 10.1117/12.2195224.
    SABORDO M G and ABOUTANIOS E. Enhanced performance for the interacting multiple model estimator with integrated multiple filters[J]. SPIE, 2015, 94600: 345-349. doi: 10.1117/12.2176180.
    MABROUK M B, GRIVEL E, MAGNANT C, et al. Compensating power amplifier distortion in cognitive radio systems with adaptive interacting multiple model[C]. 23rd European Signal Processing Conference (EUSIPCO), Nice, France, 2015: 1212-1216.
    HUANG H, YANG R, NG G W, et al. Helicopter tracking and classification with multiple interacting multiple model estimator with out-of-sequence acoustic and EO measurements[C]. 19th International Conference on Information Fusion (FUSION), Heidelberg, Germany, 2016: 1132-1139.
    KIM T H and MOON K R. Variable-structured interacting multiple model algorithm for the ballistic coefficient estimation of a re-entry ballistic target[J]. International Journal of Control, Automation, and systems, 2013, 11(6): 1204-1213.
    ZHU Zhengwei. Ship-borne radar maneuvering target tracking based on the variable structure adaptive grid interacting multiple model[J]. Journal of Zhejiang University SCIENCE C, 2013, 14(9): 733-742.
    ZHANG Yuan, GUO Chen, HU Hai, et al. An algorithm of the adaptive grid and fuzzy interacting multiple models[J]. Journal of Marine Science and Application, 2014, 13(3): 340-345.
    DAN S and TIEN L C. Kalman filtering with state equality constraints[J]. IET Control Theory and Applications, 2010, 4(8): 1303-1318.
    HARTIKAINEN J, SOLIN A, and SARKKA S. Optimal filtering with kalman filters and smoothers a manual for the MATLAB toolbox EKF/UKF[R]. 2011.
    盛骤, 等. 概率论与数理统计[M]. 北京: 高等教育出版社, 1989: 73-75.
    SHENG Zhou, et al. Probability and Statistics[M]. Beijing: High, Education Press, 1989: 73-75.
    CHIA T. Parameter identification and state estimation of constrained systems[D]. [Ph.D. dissertation], Case Western Reserve University, 1985, 17-25.
    KO S and BITMEAD R. State estimation for linear systems with state equality constraints[J]. Automatica, 2007, 43(8): 1363-1368.
    SHIMADA N, SHIRAI Y, KUNO Y, et al. Hand gesture estimation and model refinement using monocular camera- ambiguity limitation by inequality constraints[C]. IEEE International Conference on Automatic Face Gesture Recognition, Japan, 1998: 268-273.
    SIMON D and SIMON D L. Constrained Kalman filtering via density function truncation for turbofan engine health estimation[J]. International Journal of System Science, 2010, 41(2): 159-171.
    DE GEETER J, VAN BRUSSEL H, and DE SCHUTTER J. A smoothly constrained Kalman filter[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 1997, 19(10): 1171-1177.
    GOODWIN G, SERON M, and DE DONA J. Constrained control and estimation[M]. Berlin: Springer-Verlag, 2005: 251-262.
    JULIER S and UHLMANN J. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92(3): 401-422.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1259) PDF downloads(339) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return