Advanced Search
Volume 39 Issue 1
Jan.  2017
Turn off MathJax
Article Contents
FAN Yangyu, LI Zuhe, WANG Fengqin, MA Jiangtao. Affective Abstract Image Classification Based on Convolutional Sparse Autoencoders across Different Domains[J]. Journal of Electronics & Information Technology, 2017, 39(1): 167-175. doi: 10.11999/JEIT160241
Citation: FAN Yangyu, LI Zuhe, WANG Fengqin, MA Jiangtao. Affective Abstract Image Classification Based on Convolutional Sparse Autoencoders across Different Domains[J]. Journal of Electronics & Information Technology, 2017, 39(1): 167-175. doi: 10.11999/JEIT160241

Affective Abstract Image Classification Based on Convolutional Sparse Autoencoders across Different Domains

doi: 10.11999/JEIT160241
Funds:

The Science and Technology Innovation Engineering Program for Shaanxi Key Laboratories (2013SZS15-K02)

  • Received Date: 2016-03-17
  • Rev Recd Date: 2016-07-22
  • Publish Date: 2017-01-19
  • To apply unsupervised feature learning to emotional semantic analysis for images in small sample size situations, convolutional sparse autoencoder based self-taught learning for domain adaption is adopted for affective classification of a small amount of labeled abstract images. To visually compare the results of feature learning on different domains, an average gradient criterion based method is further proposed for the sorting of weights learned by sparse autoencoders. Image patches are first randomly collected from a large number of unlabeled images in the source domain and local features are learned using a sparse autoencoder. Then the weight matrices corresponding to different features are sorted according to the minimal average gradient of each matrix in three color channels. Global feature activations of labeled images in the target domain are finally obtained by a convolutional neural network including a pooling layer and sent into a logistic regression model for affective classification. Experimental results show that self-taught learning based domain adaption can provide training data for the application of unsupervised feature learning in target domains with limited samples. Sparse autoencoder based feature learning across different domains can produce better identification effect than low-level visual features in emotional semantic analysis of a limited number of abstract images.
  • loading
  • BORTH D, JI R, CHEN T, et al. Large-scale visual sentiment ontology and detectors using adjective noun pairs[C]. 21st ACM International Conference on Multimedia, Barcelona, Spain, 2013: 223-232. doi: 10.1145/2502081.2502282.
    李祖贺, 樊养余. 基于视觉的情感分析研究综述[J]. 计算机应用研究, 2015, 32(12): 3521-3526. doi: 10.3969/j.issn.1001- 3695.2015.12.001.
    LI Zuhe and FAN Yangyu. Survey on visual sentiment analysis[J]. Application Research of Computers, 2015, 32(12): 3521-3526. doi: 10.3969/j.issn.1001-3695.2015.12.001.
    MACHAJDIK J and HANBURY A. Affective image classification using features inspired by psychology and art theory[C]. 18th ACM International Conference on Multimedia, Firenze, Italy, 2010: 83-92. doi: 10.1145/ 1873951.1873965.
    ZHANG H, G?NEN M, YANG Z, et al. Understanding emotional impact of images using Bayesian multiple kernel learning[J]. Neurocomputing, 2015, 165: 3-13. doi: 10.1016/ j.neucom.2014.10.093.
    ZHAO S, GAO Y, JIANG X, et al. Exploring principles-of-art features for image emotion recognition[C]. 22nd ACM International Conference on Multimedia, Orlando, FL, USA, 2014: 47-56. doi: 10.1145/2647868.2654930.
    ZHANG H, YANG Z, G?NEN M, et al. Affective abstract image classification and retrieval using multiple kernel learning[C]. 20th International Conference on Neural Information Processing, Daegu, South Korea, 2013: 166-175. doi: 10.1007/978-3-642-42051-1_22.
    ZHANG H, AUGILIUS E, HONKELA T, et al. Analyzing emotional semantics of abstract art using low-level image features[C]. 10th International Symposium on Intelligent Data Analysis, Porto, Portugal, 2011: 413-423. doi: 10.1007/ 978-3-642-24800-9_38.
    LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539.
    李寰宇, 毕笃彦, 查宇飞, 等. 一种易于初始化的类卷积神经网络视觉跟踪算法[J]. 电子与信息学报, 2016, 38(1): 1-7. doi: 10.11999/JEIT150600.
    LI Huanyu, BI Duyan, ZHA Yufei, et al. An easily initialized visual tracking algorithm based on similar structure for convolutional neural network[J]. Journal of Electronics Information Technology, 2016, 38(1): 1-7. doi: 10.11999/ JEIT150600.
    YOU Q, LUO J, JIN H, et al. Robust image sentiment analysis using progressively trained and domain transferred deep networks[C]. 29th AAAI Conference on Artificial Intelligence (AAAI), Austin, TX, USA, 2015: 381-388.
    李祖贺, 樊养余, 王凤琴. YUV空间中基于稀疏自动编码器的无监督特征学习[J]. 电子与信息学报, 2016, 38(1): 29-37. doi: 10.11999/JEIT150557.
    LI Zuhe, FAN Yangyu, and WANG Fengqin. Unsupervised feature learning with sparse autoencoders in YUV space[J]. Journal of Electronics Information Technology, 2016, 38(1): 29-37. doi: 10.11999/JEIT150557.
    ZHANG F, DU B, and ZHANG L. Saliency-guided unsupervised feature learning for scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2175-2184. doi: 10.1109/TGRS.2014.2357078.
    杨兴明, 吴克伟, 孙永宣, 等. 可迁移测度准则下的协变量偏移修正多源集成方法[J]. 电子与信息学报, 2015, 37(12): 2913-2920. doi: 10.11999/JEIT150323.
    YANG Xingming, WU Kewei, SUN Yongxuan, et al. Modified covariate-shift multi-source ensemble method in transferability metric[J]. Journal of Electronics Information Technology, 2015, 37(12): 2913-2920. doi: 10.11999/JEIT150323.
    庄福振, 罗平, 何清, 等. 迁移学习研究进展[J]. 软件学报, 2015, 26(1): 26-39. doi: 10.13328/j.cnki.jos.004631.
    ZHUANG Fuzhen, LUO Ping, HE Qing, et al. Survey on transfer learning research[J]. Journal of Software, 2015, 26(1): 26-39. doi: 10.13328/j.cnki.jos.004631.
    DENG J, ZHANG Z, EYBEN F, et al. Autoencoder-based unsupervised domain adaptation for speech emotion recognition[J]. IEEE Signal Processing Letters, 2014, 21(9): 1068-1072. doi: 10.1109/LSP.2014.2324759.
    YANG X, ZHANG T, and XU C. Cross-domain feature learning in multimedia [J]. IEEE Transactions on Multimedia, 2015, 17(1): 64-78. doi: 10.1109/TMM.2014.2375793.
    ZHOU J T, PAN S J, TSANG I W, et al. Hybrid heterogeneous transfer learning through deep learning[C]. 28th AAAI Conference on Artificial Intelligence (AAAI), Quebec City, QC, Canada, 2014: 2213-2219.
    KOUNO K, SHINNOU H, SASAKI M, et al. Unsupervised domain adaptation for word sense disambiguation using stacked denoising autoencoder[C]. 29th Pacific Asia Conference on Language, Information and Computation (PACLIC 29), Shanghai, China, 2015: 224-231.
    COATES A, LEE H, and NG A Y. An analysis of single-layer networks in unsupervised feature learning[C]. 14th International Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, FL, USA, 2011: 215-223.
    WANG R, DU L, YU Z, et al. Infrared and visible images fusion using compressed sensing based on average gradient[C]. 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), San Jose, CA, USA, 2013: 1-4. doi: 10.1109/ICMEW.2013.6618257.
    L?NGKVIST M and LOUTFI A. Learning feature representations with a cost-relevant sparse autoencoder[J]. International Journal of Neural Systems, 2015, 25(1): 1-11. doi: 10.1142/S0129065714500348.
    LI Z, FAN Y, and LIU W. The effect of whitening transformation on pooling operations in convolutional autoencoders[J]. EURASIP Journal on Advances in Signal Processing, 2015, 2015(1): 1-11. doi: 10.1186/s13634-015- 0222-1.
    VEDALDI A and LENC K. MatConvNet: convolutional neural networks for matlab[C]. 23rd ACM International Conference on Multimedia, Brisbane, Australia, 2015: 689-692. doi: 10.1145/2733373.2807412.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1505) PDF downloads(451) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return