Advanced Search
Volume 39 Issue 1
Jan.  2017
Turn off MathJax
Article Contents
WEN Wei, CAO Xuefei, ZHANG Xuefeng, CHEN Bo, WANG Yinghua, LIU Hongwei. PolSAR Ship Detection Method Based on Multiple Polarimetric Scattering Mechanisms[J]. Journal of Electronics & Information Technology, 2017, 39(1): 103-109. doi: 10.11999/JEIT160204
Citation: WEN Wei, CAO Xuefei, ZHANG Xuefeng, CHEN Bo, WANG Yinghua, LIU Hongwei. PolSAR Ship Detection Method Based on Multiple Polarimetric Scattering Mechanisms[J]. Journal of Electronics & Information Technology, 2017, 39(1): 103-109. doi: 10.11999/JEIT160204

PolSAR Ship Detection Method Based on Multiple Polarimetric Scattering Mechanisms

doi: 10.11999/JEIT160204
Funds:

The National Science Fund for Distinguished Young Scholars (61525105), The National Natural Science Foundation of China (61201292, 61322103, 61372132), The Program for New Century Excellent Talents in University (FANEDD-201156), The Natural Science Basic Research Plan in Shaanxi Province of China (2016JQ6048), The Aviation Science Fund (20142081009) and Key Laboratory Fund of RF Integrated Laboratory in Avionics System, Shanghai Aerospace Science and, Technology Innovation Fund (SAST2015009)

  • Received Date: 2016-03-03
  • Rev Recd Date: 2016-08-23
  • Publish Date: 2017-01-19
  • Considering the shortcoming of detection method based on polarimetric contrast enhanced with single polarimetric scattering mechanism, a PolSAR detection method based on multiple polarimetric mechanisms called Dirichlet Process mixture of Latent Variable SVM (DPLVSVM) is proposed. By assembling a set of local polarimetric detectors that based on single polarimetric scattering mechanism, a global multiple polarimetric scattering mechanisms detector is obtained. With a fully Bayes treatment, DPLVSVM learns the clustering and the local detectors jointly. Taking the advantage of Bayes nonparametric, DPLVSVM handles the model selection problem flexibly. Further, in order to reduce the redundancy of polarimetric feature and improve the model generalization, a model with feature selection, Sparsity-Promoting Dirichlet Process mixture of Latent Variable SVM (SPDPLVSVM), is proposed. Thanks to the conjugate property, the parameters in both of models can be inferred efficiently via the Gibbs sampler. Finally, the proposed models on RADARSAR-2 dataset is implemented to validate their effectiveness.
  • loading
  • CRISP D J. The state of the art in ship detection in synthetic aperture radar imagery[R]. Technical Report DSTO-RR-0272, DSTO Information Sciences Laboratory, South Australia, Australia, 2004.
    TOUZI R, CHARBONNEAU F, HAWKINS R K, et al. Ship- sea contrast optimization when using polarimetric SARS[C]. IEEE 2001 International Conference on Geoscience and Remote Sensing Symposium, Sydney, Australia, 2001: 426-428.
    邢艳肖, 张毅, 李宁, 等. 一种联合特征值信息的全极化SAR图像监督分类方法[J]. 雷达学报, 2016, 5(2): 217-227. doi: 10.12000/JR16019.
    XING Yanxiao, ZHANG Yi, LI Ning, et al. Polarimetric SAR image supervised classification method integrating eigenvalues[J]. Journal of Radars, 2016, 5(2): 217-227 doi: 10.12000/JR16019.
    ARMANDO Marino. A notch filter for ship detection with polarimetric SAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(3): 1219-1232. doi: 10.1109/JSTARS.2013.2247741.
    YEREMY M, CAMPBELL J W M, MATTAR K, et al. Ocean surveillance with polarimetric SAR[J]. Canadian Journal of Remote Sensing, 2001, 27: 328-344. doi: 10.1080/ 07038992.
    NOVAK L M, MICHAEL B S, and MICHELE J C. Studies of target detection algorithms that use polarimetric radar data[J]. IEEE Transactions on Aerospace and Electronic Systems, 1989, 25(2): 150-165. doi: 10.1109/7.18677.
    NOVAK L M, BURL M C, and IRVING W W. Optimal polarimetric processing for enhanced target detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(1): 234-244. doi: 10.1109/NTC.1991.147989.
    YANG Jian, ZHANG Hongji, and YOSHIO Yamaguchi. GOPCE-based approach to ship detection[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(6): 1089-1093. doi: 10.1109/LGRS.2012.2191611.
    LEE Jongsen, HOPPEL K W, MANGO S A, et al. Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5): 1017-1028. doi: 10.1109/36.312890.
    WANG Yinghua and LIU Hongwei. PolSAR ship detection based on superpixel-level scattering mechanism distribution features[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(8): 1780-1784. doi: 10.1109/LGRS.2015.2425873.
    陈博, 王爽, 焦李成, 等. 利用0-1矩阵分解集成的极化SAR图像分类[J]. 电子与信息学报, 2015, 37(6): 1495-1501. doi: 10.11999/JEIT141059.
    CHEN Bo, WANG Shuang, JIAO Licheng, et al. Polarimetric SAR image classification via weighted ensemble based on 0-1 matrix decomposition[J]. Journal of Electronics Information Technology, 2015, 37(6): 1495-1501. doi: 10.11999/JEIT141059.
    崔浩贵, 刘涛, 蒋宇中, 等. 基于混合矩的极化SAR图像K分布模型参数估计新方法[J]. 电子与信息学报, 2015, 37(2): 328-333. doi: 10.11999/JEIT140551.
    CUI Haogui, LIU Tao, JIANG Yuzhong, et al. Parameter estimation for the K-distribution in PolSAR imagery based on hybrid moments[J]. Journal of Electronics Information Technology, 2015, 37(2): 328-333. doi: 10.11999/JEIT140551.
    杨学志, 叶铭, 吴克伟, 等. 结构保持的双边滤波极化SAR图像降噪[J]. 电子与信息学报, 2015, 37(2): 268-275. doi: 10.11999/JEIT140199.
    YANG Xuezhi, YE Ming, WU Kewei, et al. Speckle reduction for PolSAR image based on structure preserving Bilateral filtering[J]. Journal of Electronics Information Technology, 2015, 37(2): 268-275. doi: 10.11999/JEIT140199.
    刘璐, 刘帅, 焦李成, 等. 采用联合域字典稀疏表示的极化SAR图像分类[J]. 华中科技大学学报(自然科学版), 2016, 44(2): 81-85. doi: 10.13245/j.hust.160217.
    LIU Lu, LIU Shuai, JIAO Licheng, et al. Combined dictionary learning based sparse representation for PolSAR image classification[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2016, 44(2): 81-85. doi: 10.13245/j.hust.160217.
    RINGROSE R and HARRIS N. Ship detection using polarimetric SAR data[C]. Proceedings of SAR Workshop: CEOS Committee on Earth Observation Satellites; Working Group on Calibration and Validation, Toulouse, France, 2000, 450: 687-691.
    HIROYUKI W, YUTA M, and KAZUKI N. Sea ice detection in the sea of Okhotsk using POLSAR and MODIS data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(3): 1516-1523. doi: 10.1109/JSTARS.2013.2258327.
    WANG Na, SHI Gongtao, LIU Li, et al. Plarimetric SAR target detection using the reflection symmetry[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(6): 1104-1108. doi: 10.1109/LGRS.2012.2189548.
    文伟, 王英华, 冯博, 等. 基于监督非相干字典学习的极化SAR图像舰船目标检测[J]. 自动化学报, 2015, 41(11): 1926-1940. doi: 10.16383/j.aas.2015.c140530.
    WEN Wei, WANG Yinghua, FENG Bo, et al. Supervise incoherent dictionary learning for ship detection with PolSAR images[J]. Acta Automatica Sinica, 2015, 41(11): 1926-1940. doi: 10.16383/j.aas.2015.c140530.
    KHALID E D, PETER M, DESMOND P, et al. Target detection in synthetic aperture radar imagery: A state of the art survey[J]. Journal of Applied Remote Sensing, 2013, 7(1): 071598. doi: 10.1117/1.JRS.7.071598.
    张学峰, 陈渤, 王鹏辉, 等. 一种基于Dirichlet过程隐变量支撑向量机模型的目标识别方法[J]. 电子与信息学报, 2015, 37(1): 29-36 doi: 10.11999/JEIT140129.
    ZHANG Xuefeng, CHEN Bo, WANG Penghui, et al. A target recognition method based on Dirichlet process latent variable support vector machine model[J]. Journal of Electronics Information Technology, 2015, 37(1): 29-36 doi: 10.11999/ JEIT140129.
    赵一博, 秦先祥, 邹焕新. 基于目标分解和SVM的极化SAR图像分类方法[J]. 航天返回与遥感, 2013, 34(2): 50-56.
    ZHAO Yibo, QIN Xianxiang, and ZOU Huanxin. Classification of polarimetric SAR image based on target decomposition and SVM[J]. Journal of Spacecraft Recovery Remote Sensing, 2013, 34(2): 50-56.
    XU Danlei, DU Lan, LIU Hongwei, et al. Bayesian classifier for sparsity-promoting feature selection[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2015, 29(6): 1-28. doi: 10.1142/S0218001415500226.
    LEE J S, MITCHELL R G, THOMAS L A, et al. Unsupervised classification using polarimetric decomposition and the complex wishart classifier[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2249-2258. doi: 10.1109/36.789621.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1380) PDF downloads(536) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return