Advanced Search
Volume 38 Issue 4
Apr.  2016
Turn off MathJax
Article Contents
Investigation on THz Interferometer System Based onHigh Speed Digital Correlator[J]. Journal of Electronics & Information Technology, 2016, 38(4): 964-969. doi: 10.11999/JEIT150841
Citation: Investigation on THz Interferometer System Based onHigh Speed Digital Correlator[J]. Journal of Electronics & Information Technology, 2016, 38(4): 964-969. doi: 10.11999/JEIT150841

Investigation on THz Interferometer System Based onHigh Speed Digital Correlator

doi: 10.11999/JEIT150841
  • Received Date: 2015-07-13
  • Rev Recd Date: 2015-11-13
  • Publish Date: 2016-04-19
  • As a conventional unit in interferometric imager, correlator has a wide range of applications to get visibility functions. THz imager has more and more applied to security check and military scouting area. To solve the phase synchronization problem in high speed digital correlator, which is designed for THz interferometer, this paper presents a cross synchronization scheme based on low hardware cost FPGA controller. A high speed multichannel digital correlator is presented under this scheme. In this correlator, sampling rate can reach as high as 5 GHz, effective number of ADC is greater than or equal to 6 bit, integration time is adjustable. Interference fringes are presented by constructing a 0.44 THz interferometer out of this correlator and related THz microwave devices. The fringes linear phase error is better than2. The research could provide important reference value about the design of THz interferometric imager in future.
  • loading
  • NEZADAL M, ADAMETZ J, and SCHMIDT L P. Wideband imaging systems in the mm-wave and THz range for security and nondestructive testing[C]. IEEE General Assembly and Scientific Symposium, Beijing, China, 2014: 104-118.
    PIERNO L, FIORELLO A M, SCAFE S, et al. THz-TDS analysis of hidden explosives for homeland security scenarios[C]. IEEE Millimeter Waves and THz Technology Workshop, Rome, Italy, 2013: 1-2.
    DILL S and PEICHL M. Study of passive MMW personnel imaging with respect to suspicious and common concealed objects for security applications[C]. Millimetre Wave and Terahertz Sensors and Technology (SPIE), Cardiff, United Kingdom, 2008: 7117-7125.
    LUUKANEN A, KIURU T, LEIVO M M, et al. Passive three-colour submillimetre-wave video camera[J]. Proceeding SPIE, 2013, 8715. doi: 10.1117/12.2018038.
    BANDYOPADHYAY A, SINYUKOV A M, and BARAT R B. Interferometric terahertz imaging for detection of lethal agents using artificial neural network analyses[C]. IEEE Sarnoff Symposium, Princeton, United States, 2006, 9908968: 1-4.
    THOMPSON A R and MORAN J M. Interferometry and Synthesis in Radio Astronomy[M]. Second Edition, Weinheim, John Wiley Sons, 2004: 50-63.
    RUF C S, SWIFT C T, TANNER A B, et al. Interferometric synthetic aperture microwave radiometry for the remote sensing of the Earth[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(5): 597-611.
    WU L, TORRES F, CORBELLA I, et al. Radiometric performance of SMOS full polarimetric imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1454-1458.
    LIU H, WU J, ZHANG S, et al. The Geostationary Interferometric Microwave Sounder (GIMS): instrument overview and recent progress[C]. Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, 2011: 3629-3632.
    ZHANG C, LIU H, WU J, et al. Imaging analysis and first results of the geostationary interferometric microwave sounder demonstrator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 207-218.
    杨海钢, 孙嘉斌, 王慰. FPGA器件设计技术发展综述[J]. 电子与信息学报, 2010, 32(3): 714-727.
    YANG H G, SUN J B, and WANG W. An overview to FPGA device design technologies[J]. Journal of Electronics Information Technology, 2010, 32(3): 714-727.
    孟进, 张德海, 蒋长宏. 225 GHz 三倍频器实用设计方法[J]. 红外与毫米波学报, 2015, 34(2): 190-195.
    MENG J, ZHANG D H, and JIANG C H. Research on the practical design method of 225 GHz tripler[J]. Journal of Infrared and Millimeter Waves, 2015, 34(2): 190-195.
    BUTORA R, MARTIN M, ANGEL L, et al. Fringe-washing function calibration in aperture synthesis microwave radiometry[J]. Radio Science, 2003, 38(2): 1032. doi: 10.1029/2002RS002695.
    吴琼之, 蔡春霞, 丁一辰, 等. 5 Gsps高速数据采集系统的设计与实现[J]. 电子与设计工程, 2012, 20(1): 154-157.
    WU Q Z, CAI C X, DING Y C, et al. Design and implementation of 5 Gsps high-speed data acquisition system[J]. Electronic Design Engineering, 2012, 20(1): 154-157.
    王虹现, 李刚, 邢孟道, 等. 微型SAR的数字下变频设计[J]. 电子与信息学报, 2010, 32(2): 485-489. doi:10.3724/SP.J.1146. 2008.01770.
    WANG H X, LI G, XING M D, et al. Design of digital down converter of mini SAR[J]. Journal of Electronics Information Technology, 2010, 32(2): 485-489. doi:10.3724/ SP.J.1146.2008.01770.
    PARHI K. VLSI Digital Signal Processing Systems: Design and Implementation[M]. Chichester: John Wiley Sons, 1999: 229-261.
    CORBELLA I, TORRES F, CAMPS A, et al. MIRAS end-to-end calibration: application to SMOS L1 processor[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(5): 1126-1134.
    PIEPMEIER J R and GASIEWSKI A J. Digital correlation microwave polarimetry: Analysis and demonstration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(11): 2392-2410.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1359) PDF downloads(420) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return