Advanced Search
Volume 46 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
YANG Jianmin, WANG Jiahui, QIAO Gang, LIU Songzuo, MA Lu, HE Peng. Review of Underwater Acoustic Communication and Network Technology[J]. Journal of Electronics & Information Technology, 2024, 46(1): 1-21. doi: 10.11999/JEIT230424
Citation: YANG Jianmin, WANG Jiahui, QIAO Gang, LIU Songzuo, MA Lu, HE Peng. Review of Underwater Acoustic Communication and Network Technology[J]. Journal of Electronics & Information Technology, 2024, 46(1): 1-21. doi: 10.11999/JEIT230424

Review of Underwater Acoustic Communication and Network Technology

doi: 10.11999/JEIT230424
  • Received Date: 2023-05-15
  • Rev Recd Date: 2023-11-06
  • Available Online: 2023-11-14
  • Publish Date: 2024-01-17
  • Underwater Acoustic Communication(UAC) and network technology play an important role in marine environment monitoring, commercial field and military field, caring about the ocean, understanding the ocean, and managing the ocean are inseparable from the development of underwater acoustic communication and network technology. The UAC technology and Underwater Acoustic Communication Network(UACN) are reviewed in this paper. Firstly, the development of underwater acoustic communication technology and underwater acoustic communication network is reviewed, and the characteristics of underwater acoustic channel is summarized. Then, the incoherent modulation technology, coherent modulation technology and new communication technology oriented to application requirements in underwater acoustic communication technology are described, and the data link layer media access control protocol, network layer routing protocol and cross-layer design in underwater acoustic communication network are classified and discussed. Finally, the shortcomings of current underwater acoustic communication and network technology are summarized, and the future development of underwater acoustic communication and network technology is prospected.
  • loading
  • [1]
    许肖梅. 水声通信与水声网络的发展与应用[J]. 声学技术, 2009, 28(6): 811–816. doi: 10.3969/j.issn1000-3630.2009.06.026

    XU Xiaomei. Development and applications of underwater acoustic communication and networks[J]. Technical Acoustics, 2009, 28(6): 811–816. doi: 10.3969/j.issn1000-3630.2009.06.026
    [2]
    石扬, 殷敬伟, 韩笑, 等. 潜航器水声通信导航定位一体化技术进展[J]. 哈尔滨工程大学学报, 2023, 44(1): 1–10. doi: 10.11990/jheu.202205064

    SHI Yang, YIN Jingwei, HAN Xiao, et al. Advances in integrated technology of underwater acoustic communication, navigation, and positioning of submarines[J]. Journal of Harbin Engineering University, 2023, 44(1): 1–10. doi: 10.11990/jheu.202205064
    [3]
    SHERMIN S A, DHONGDI S C. Review of underwater mobile sensor network for ocean phenomena monitoring[J]. Journal of Network and Computer Applications, 2022, 205: 103418. doi: 10.1016/j.jnca.2022.103418
    [4]
    赵燕锋, 杨逍宇, 童峰, 等. 宽码率Polar码浅海水声通信实验研究[J]. 数字海洋与水下攻防, 2022, 5(5): 419–424. doi: 10.19838/j.issn.2096-5753.2022.05.005

    ZHAO Yanfeng, YANG Xiaoyu, TONG Feng, et al. Experimental study on shallow sea acoustic communication with multi-rate polar code[J]. Digital Ocean & Underwater Warfare, 2022, 5(5): 419–424. doi: 10.19838/j.issn.2096-5753.2022.05.005
    [5]
    SHOVON I I and SHIN S. Survey on multi-path routing protocols of underwater wireless sensor networks: Advancement and applications[J]. Electronics, 2022, 11(21): 467. doi: 10.3390/electronics11213467
    [6]
    LEI Zhufeng, LEI Xiaofang, WANG Na, et al. Present status and challenges of underwater acoustic target recognition technology: A review[J]. Frontiers in Physics, 2022, 10: 1044890. doi: 10.3389/fphy.2022.1044890
    [7]
    MARY D R K, KO E, YOON D J, et al. Energy optimization techniques in underwater internet of things: Issues, state-of-the-art, and future directions[J]. Water, 2022, 14(20): 3240. doi: 10.3390/w14203240
    [8]
    NIU Qixiang, ZHANG Qunfei, and SHI Wentao. Waveform design and signal processing method for integrated underwater detection and communication system[J]. IET Radar, Sonar & Navigation, 2023, 17(4): 617–627. doi: 10.1049/rsn2.12365.
    [9]
    陈浩, 郭佳妮, 宋姗姗, 等. 基于随机接入的空天地海一体化网络性能分析[J]. 移动通信, 2022, 46(10): 35–40,70. doi: 10.3969/j.issn.1006-1010.20220904-0001

    CHEN Hao, GUO Jiani, SONG Shanshan, et al. Performance analysis of space-air-ground-sea integrated network based on random access[J]. Mobile Communications, 2022, 46(10): 35–40,70. doi: 10.3969/j.issn.1006-1010.20220904-0001
    [10]
    江子龙, 王焱, 钟雪峰, 等. 基于NS-3的声电协同网络实现及路由性能分析[J]. 电子与信息学报, 2022, 44(6): 2014–2023. doi: 10.11999/JEIT211274

    JIANG Zilong, WANG Yan, ZHONG Xuefeng, et al. Implementation and routing performance analysis based on network simulator-3 for coordinate radio-acoustic network[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2014–2023. doi: 10.11999/JEIT211274
    [11]
    MAHMUD M, ISLAM A, AHMED A, et al. Cross-medium photoacoustic communications: Challenges, and state of the art[J]. Sensors, 2022, 22(11): 4224. doi: 10.3390/s22114224
    [12]
    朱凯凯. 水下无线通信技术的研究与展望[J]. 现代传输, 2022(6): 51–53. doi: 10.3969/j.issn.1673-5137.2022.06.008

    ZHU Kaikai. Research and prospect of underwater wireless communication technology[J]. Modern Transmission, 2022(6): 51–53. doi: 10.3969/j.issn.1673-5137.2022.06.008
    [13]
    贾宁, 黄建纯. 水声通信技术综述[J]. 物理, 2014, 43(10): 650–657. doi: 10.7693/wl20141002

    JIA Ning and HUANG Jianchun. An overview of underwater acoustic communications[J]. Physics, 2014, 43(10): 650–657. doi: 10.7693/wl20141002
    [14]
    刘千里, 吴晖. 水下无线传感器网络通信技术研究现状及趋势[J]. 舰船电子工程, 2022, 42(9): 20–24,28. doi: 10.3969/j.issn.1672-9730.2022.09.005

    LIU Qianli and WU Hui. Research status and trend of underwater wireless sensor network communication technology[J]. Ship Electronic Engineering, 2022, 42(9): 20–24,28. doi: 10.3969/j.issn.1672-9730.2022.09.005
    [15]
    赵蕊, 许建, 向先波, 等. 多自主式水下机器人的路径规划和控制技术研究综述[J]. 中国舰船研究, 2018, 13(6): 58–65. doi: 10.19693/j.issn.1673-3185.01028

    ZHAO Rui, XU Jian, XIANG Xianbo, et al. A review of path planning and cooperative control for MAUV systems[J]. Chinese Journal of Ship Research, 2018, 13(6): 58–65. doi: 10.19693/j.issn.1673-3185.01028
    [16]
    乔钢, 刘凇佐, 刘奇佩. 水声通信网络协议、仿真与试验综述[J]. 水下无人系统学报, 2017, 25(2): 151–160. doi: 10.11993/j.issn.2096-3920.2017.02.002

    QIAO Gang, LIU Songzuo, and LIU Qipei. Review of protocols, simulation and experimentation for underwater acoustic communication network[J]. Journal of Unmanned Undersea Systems, 2017, 25(2): 151–160. doi: 10.11993/j.issn.2096-3920.2017.02.002
    [17]
    赵云江, 乔钢, 刘凇佐, 等. 带内全双工水声通信技术研究现状与展望[J]. 数字海洋与水下攻防, 2021, 4(3): 195–205. doi: 10.19838/j.issn.2096-5753.2021.03.006

    ZHAO Yunjiang, QIAO Gang, LIU Songzuo, et al. Research status and prospect of in-band full-duplex underwater acoustic communication technology[J]. Digital Ocean & Underwater Warfare, 2021, 4(3): 195–205. doi: 10.19838/j.issn.2096-5753.2021.03.006
    [18]
    李淑秋, 李启虎, 张春华. 第六讲水下声学传感器网络的发展和应用[J]. 物理, 2006, 35(11): 945–952. doi: 10.3321/j.issn:0379-4148.2006.11.012

    LI Shuqiu, LI Qihu, and ZHANG Chunhua. Development and applications of underwater acoustic sensor network[J]. Physics, 2006, 35(11): 945–952. doi: 10.3321/j.issn:0379-4148.2006.11.012
    [19]
    徐文, 鄢社锋, 季飞, 等. 海洋信息获取、传输、处理及融合前沿研究评述[J]. 中国科学:信息科学, 2016, 46(8): 1053–1085. doi: 10.1360/N112016-00064

    XU Wen, YAN Shefeng, JI Fei, et al. Marine information gathering, transmission, processing, and fusion: Current status and future trends[J]. Scientia Sinica Informationis, 2016, 46(8): 1053–1085. doi: 10.1360/N112016-00064
    [20]
    STOJANOVIC M, CATIPOVIC J, and PROAKIS J G. Adaptive multichannel combining and equalization for underwater acoustic communications[J]. The Journal of the Acoustical Society of America, 1993, 94(3): 1621–1631. doi: 10.1121/1.408135
    [21]
    QIAO Gang, SONG Qingjun, MA Lu, et al. Channel prediction based temporal multiple sparse bayesian learning for channel estimation in fast time-varying underwater acoustic OFDM communications[J]. Signal Processing, 2020, 175: 107668. doi: 10.1016/j.sigpro.2020.107668
    [22]
    TAO Jun, WU Yanbo, HAN Xiao, et al. Sparse direct adaptive equalization for single-carrier MIMO underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2020, 45(4): 1622–1631. doi: 10.1109/JOE.2019.2946679
    [23]
    SONG H C and HODGKISS W S. Efficient use of bandwidth for underwater acoustic communication[J]. The Journal of the Acoustical Society of America, 2013, 134(2): 905–908. doi: 10.1121/1.4812762
    [24]
    KIDA Y, DEGUCHI M, and SHIMURA T. Experimental result for a high-rate underwater acoustic communication in deep sea for a manned submersible SHINKAI6500[J]. The Journal of the Marine Acoustics Society of Japan, 2018, 45(4): 197–203. doi: 10.3135/jmasj.45.197
    [25]
    MOSCA F, MATTE G, and SHIMURA T. Low-frequency source for very long-range underwater communication[J]. The Journal of the Acoustical Society of America, 2013, 133(1): EL61–EL67. doi: 10.1121/1.4773199
    [26]
    SONG H C, CHO S, KANG T, et al. Long-range acoustic communication in deep water with a shallow source and horizontal towed array[J]. The Journal of the Acoustical Society of America, 2011, 129(4S): 2666. doi: 10.1121/1.3588923
    [27]
    KIDA Y, DEGUCHI M, and SHIMURA T. Experimental demonstration of spatial division multiplexing multiple-input/multiple-output underwater acoustic communication using a time-reversal method at the depth of the continental shelf: a consideration of optimization of signal length and number of transmission channels[J]. Japanese Journal of Applied Physics, 2023, 62(SJ): SJ1049. doi: 10.35848/1347-4065/acc6d9
    [28]
    王彪, 方涛, 戴跃伟. 时间反转滤波器组多载波水声通信方法[J]. 声学学报, 2020, 45(1): 38–44. doi: 10.15949/j.cnki.0371-0025.2020.01.004

    WANG Biao, FANG Tao, and DAI Yuewei. Method of time reversal filter bank multicarrier underwater acoustic communication[J]. Acta Acustica, 2020, 45(1): 38–44. doi: 10.15949/j.cnki.0371-0025.2020.01.004
    [29]
    邱逸凡, 李爽, 童峰. 一种浅海信道自适应调制水声通信方案[J]. 舰船科学技术, 2021, 43(19): 158–162. doi: 10.3404/j.issn.1672-7649.2021.10.032

    QIU Yifan, LI Shuang, and TONG Feng. A shallow sea channel adaptive modulation underwater acoustic communication scheme[J]. Ship Science and Technology, 2021, 43(19): 158–162. doi: 10.3404/j.issn.1672-7649.2021.10.032
    [30]
    杨劭坚. 浙大自主研发水声通信机实现14公里高速率通信[EB/OL]. https://www.zju.edu.cn/2022/0304/c65659a2503328/pagem.htm, 2022.
    [31]
    台玉朋, 王海斌, 杨晓霞, 等. 一种适用于深海远程水声通信的LT-Turbo均衡方法[J]. 中国科学: 物理学 力学 天文学, 2016, 46(9): 094313.

    TAI Yupeng, WANG Haibin, YANG Xiaoxia, et al. A novel LT-Turbo equalization for long-range deep-water acoustic communication[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2016, 46(9): 094313.
    [32]
    徐立军, 鄢社锋, 曾迪, 等. 全海深高速水声通信机设计与试验[J]. 信号处理, 2019, 35(9): 1505–1512. doi: 10.16798/j.issn.1003-0530.2019.09.007

    XU Lijun, YAN Shefeng, ZENG Di, et al. Design of the full-depth high rate underwater communication modem[J]. Journal of Signal Processing, 2019, 35(9): 1505–1512. doi: 10.16798/j.issn.1003-0530.2019.09.007
    [33]
    朱敏, 武岩波. 水声通信技术进展[J]. 中国科学院院刊, 2019, 34(3): 289–296. doi: 10.16418/j.issn.1000-3045.2019.03.006

    ZHU Min and WU Yanbo. Development of underwater acoustic communication technology[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(3): 289–296. doi: 10.16418/j.issn.1000-3045.2019.03.006
    [34]
    QIAO Gang, LIU Songzuo, ZHOU Feng, et al. Experimental study of long-range shallow water acoustic communication based on OFDM-modem[J]. Advanced Materials Research, 2012, 546–547: 1308–1313.
    [35]
    RICE J and GREEN D. Underwater acoustic communications and networks for the US navy's seaweb program[C]. The 2008 Second International Conference on Sensor Technologies and Applications, Cap Esterel, France, 2008: 715–722.
    [36]
    聂卫东, 马玲, 张博, 等. 浅析美军水下无人作战系统及其关键技术[J]. 水下无人系统学报, 2017, 25(5): 310–318. doi: 10.11993/j.issn.2096-3920.2017.04.002

    NIE Weidong, MA Ling, ZHANG Bo, et al. A brief analysis of united states unmanned underwater combat system[J]. Journal of Unmanned Undersea Systems, 2017, 25(5): 310–318. doi: 10.11993/j.issn.2096-3920.2017.04.002
    [37]
    NISHIKAWA T, MATSUZAWA T, OHTA K, et al. The slow earthquake spectrum in the Japan Trench illuminated by the S-net seafloor observatories[J]. Science, 2019, 365(6455): 808–813. doi: 10.1126/science.aax5618
    [38]
    杨健敏. 基于定向收发的水声通信网络关键技术研究[D]. [博士论文], 哈尔滨工程大学, 2018.

    YANG Jianmin. Research on key technology of underwater acoustic communication networks using directional transmission[D]. [Ph. D. dissertation], Harbin Engineering University, 2018.
    [39]
    GAO Jingjie, SHEN Xiaohong, ZHAO Ruiqin, et al. A double rate localization algorithm with one anchor for multi-hop underwater acoustic networks[J]. Sensors, 2017, 17(5): 984. doi: 10.3390/s17050984
    [40]
    STOJANOVIC M. Underwater acoustic communications[C]. Electro/International 1995, Boston, USA, 1995: 435–440.
    [41]
    周密, 崔勇, 徐兴福, 等. 水声传感网MAC协议综述[J]. 计算机科学, 2011, 38(9): 5–10, 17. doi: 10.3969/j.issn.1002-137X.2011.09.002

    ZHOU Mi, CUI Yong, XU Xingfu, et al. Survey of the MAC protocols on underwater acoustic sensor network[J]. Computer Science, 2011, 38(9): 5–10, 17. doi: 10.3969/j.issn.1002-137X.2011.09.002
    [42]
    胡安平, 高锐, 张建春. 水声信道传输特性研究[J]. 现代导航, 2013, 4(4): 278–284.

    HU Anping, GAO Rui, and ZHANG Jianchun. Study of underwater acoustic channel transmission[J]. Modern Navigation, 2013, 4(4): 278–284.
    [43]
    尤立克R J, 洪申, 译. 水声原理[M]. 3版. 哈尔滨: 哈尔滨船舶工程学院出版社, 1990.

    URICK R J, HONG Shen, translation. Principies of Underwater Sound[M]. 3rd ed. Harbin: Harbin Engineering University Press, 1990.
    [44]
    汪德昭, 尚尔昌. 水声学[M]. 北京: 科学出版社, 1981.

    WANG Dezhao and SHANG Erchang. Hydroacoustics[M]. Beijing: Science Press, 1981.
    [45]
    程华康, 王好贤. 基于卡尔曼滤波的时变水声信道估计[J]. 声学技术, 2022, 41(6): 833–837. doi: 10.16300/j.cnki.1000-3630.2022.06.007

    CHENG Huakang and WANG Haoxian. Time varying underwater acoustic channel estimation based on Kalman filter[J]. Technical Acoustics, 2022, 41(6): 833–837. doi: 10.16300/j.cnki.1000-3630.2022.06.007
    [46]
    郭忠文, 罗汉江, 洪锋, 等. 水下无线传感器网络的研究进展[J]. 计算机研究与发展, 2010, 47(3): 377–389.

    GUO Zhongwen, LUO Hanjiang, HONG Feng, et al. Current progress and research issues in underwater sensor networks[J]. Journal of Computer Research and Development, 2010, 47(3): 377–389.
    [47]
    KHAN H, HASSAN S A, and JUNG H. On underwater wireless sensor networks routing protocols: A review[J]. IEEE Sensors Journal, 2020, 20(18): 10371–10386. doi: 10.1109/JSEN.2020.2994199
    [48]
    高潭, 吕成财, 田川. 面向OFDM-MFSK水声通信的差错控制方法[J]. 系统工程与电子技术, 2022, 44(5): 1701–1708. doi: 10.12305/j.issn.1001-506X.2022.05.33

    GAO Tan, LYU Chengcai, and TIAN Chuan. Error control method for OFDM-MFSK underwater acoustic communication[J]. Systems Engineering and Electronics, 2022, 44(5): 1701–1708. doi: 10.12305/j.issn.1001-506X.2022.05.33
    [49]
    韩笑. 浅海环境下单载波时域均衡水声通信关键技术研究[D]. [博士论文], 哈尔滨工程大学, 2016.

    HAN Xiao. Research on time domain equalization of single carrier underwater acoustic communication in shallow water environment[D]. [Ph. D. dissertation], Harbin Engineering University, 2016.
    [50]
    STOJANOVIC M, CATIPOVIC J A, and PROAKIS J G. Phase-coherent digital communications for underwater acoustic channels[J]. IEEE Journal of Oceanic Engineering, 1994, 19(1): 100–111. doi: 10.1109/48.289455
    [51]
    宋庆军. 基于稀疏贝叶斯学习的水声OFDM稀疏信道估计[D]. [博士论文], 哈尔滨工程大学, 2021.

    SONG Qingjun. Research on sparse Bayesian learning based sparse channel estimation in underwater acoustic OFDM communication[D]. [Ph. D. dissertation], Harbin Engineering University, 2021.
    [52]
    张友文, 黄福朋, 兰华林, 等. 水声单载波调制技术综述[J]. 哈尔滨工程大学学报, 2019, 40(11): 1809–1815. doi: 10.11990/jheu.201809058

    ZHANG Youwen, HUANG Fupeng, LAN Hualin, et al. Review of underwater acoustic single-carrier modulation technology[J]. Journal of Harbin Engineering University, 2019, 40(11): 1809–1815. doi: 10.11990/jheu.201809058
    [53]
    杨斌斌, 鄢社锋, 章绍晨, 等. 基于Kalman滤波的水声混合双向迭代信道均衡算法[J]. 电子与信息学报, 2022, 44(6): 1879–1886. doi: 10.11999/JEIT211343

    YANG Binbin, YAN Shefeng, ZHANG Shaochen, et al. Hybrid bi-directional turbo equalization for underwater acoustic communications based on Kalman filter[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1879–1886. doi: 10.11999/JEIT211343
    [54]
    刘璐, 孙大军, 张友文. 宽线性L1范数RLS水声单载波判决反馈接收技术[J]. 哈尔滨工程大学学报, 2018, 39(3): 406–413. doi: 10.11990/jheu.201605072

    LIU Lu, SUN Dajun, and ZHANG Youwen. Adaptive DFE receiver with widely linear L1-norm penalized RLS algorithm in the single carrier underwater acoustic communication system[J]. Journal of Harbin Engineering University, 2018, 39(3): 406–413. doi: 10.11990/jheu.201605072
    [55]
    陈芳炯, 刘明星, 付振华, 等. 水声通信中稀疏信道均衡算法优化[J]. 华南理工大学学报(自然科学版), 2022, 50(12): 89–100. doi: 10.12141/j.issn.1000-565X.220040

    CHEN Fangjiong, LIU Mingxing, FU Zhenhua, et al. Optimization of sparse channel equalization algorithm in underwater acoustic communication[J]. Journal of South China University of Technology (Natural Science Edition), 2022, 50(12): 89–100. doi: 10.12141/j.issn.1000-565X.220040
    [56]
    王海斌, 汪俊, 台玉朋, 等. 水声通信技术研究进展与技术水平现状[J]. 信号处理, 2019, 35(9): 1441–1449. doi: 10.16798/j.issn.1003-0530.2019.09.001

    WANG Haibin, WANG Jun, TAI Yupeng, et al. Development and the state of the art in underwater acoustic communication[J]. Journal of Signal Processing, 2019, 35(9): 1441–1449. doi: 10.16798/j.issn.1003-0530.2019.09.001
    [57]
    PETRONI A, SCARANO G, CUSANI R, et al. On the effect of channel knowledge in underwater acoustic communications: Estimation, prediction and protocol[J]. Electronics, 2023, 12(7): 1552. doi: 10.3390/electronics12071552
    [58]
    马璐, 刘凇佐, 乔钢, 等. 水声正交频分复用异步多用户接入方法[J]. 声学学报, 2017, 42(4): 436–444. doi: 10.15949/j.cnki.0371-0025.2017.04.007

    MA Lu, LIU Songzuo, QIAO Gang, et al. Asynchronous multiuser reception for underwater acoustic orthogonal frequency division multiplexing communications[J]. Acta Acustica, 2017, 42(4): 436–444. doi: 10.15949/j.cnki.0371-0025.2017.04.007
    [59]
    ZHANG Jie, YANG Guang, HAN Guangjie, et al. Space/frequency-division-based full-duplex data transmission method for multihop underwater acoustic communication networks[J]. IEEE Internet of Things Journal, 2023, 10(2): 1654–1665. doi: 10.1109/JIOT.2022.3209289
    [60]
    叶子豪, 鄢社锋, 杨斌斌. 基于子载波间干扰深度估计的MIMO-OFDM水声通信接收机[J]. 电子与信息学报, 2023, 45(7): 2519–2527. doi: 10.11999/JEIT220794

    YE Zihao, YAN Shefeng, and YANG Binbin. MIMO-OFDM underwater acoustic communication receiver based on intercarrier interference depth estimation[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2519–2527. doi: 10.11999/JEIT220794
    [61]
    张玲玲, 黄建国, 韩晶, 等. 水声MIMO-OFDM通信中的空频迭代信道估计与均衡[J]. 西北工业大学学报, 2016, 34(2): 208–214. doi: 10.3969/j.issn.1000-2758.2016.02.004

    ZHANG Lingling, HUANG Jianguo, HAN Jing, et al. SFICEE (spatial-frequency iterative channel estimation and equalization) in underwater acoustic MIMO-OFDM communication[J]. Journal of Northwestern Polytechnical University, 2016, 34(2): 208–214. doi: 10.3969/j.issn.1000-2758.2016.02.004
    [62]
    孙海信, 何崇林, 王俊峰, 等. 水下无线传感器网络抗恶意干扰技术应用及研究进展[J]. 水下无人系统学报, 2023, 31(1): 128–142. doi: 10.11993/j.issn.2096-3920.2022-0090

    SUN Haixin, HE Chonglin, WANG Junfeng, et al. Anti-malicious interference technology for underwater wireless sensor networks: Applications and recent advances[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 128–142. doi: 10.11993/j.issn.2096-3920.2022-0090
    [63]
    周锋. 水声扩频通信关键技术研究[D]. [博士论文], 哈尔滨工程大学, 2012.

    ZHOU Feng. The study of the key technologies for UnderWater acoustic spread-spectrum communication[D]. [Ph. D. dissertation], Harbin Engineering University, 2012.
    [64]
    周锋, 尹艳玲, 乔钢. 猝发混合扩频水声隐蔽通信技术[J]. 声学学报, 2017, 42(1): 37–47. doi: 10.15949/j.cnki.0371-0025.2017.01.005

    ZHOU Feng, YIN Yanling, and QIAO Gang. Burst mode spread spectrum technology for covert underwater acoustic communication[J]. Acta Acustica, 2017, 42(1): 37–47. doi: 10.15949/j.cnki.0371-0025.2017.01.005
    [65]
    何成兵, 荆少晶, 花飞, 等. 循环移位扩频多用户水声通信[J]. 通信学报, 2017, 38(7): 11–17. doi: 10.11959/j.issn.1000-436x.2017141

    HE Chengbing, JIN Shaojing, HUA fei, et al. Multiuser cyclic shift keying spread spectrum underwater acoustic communication[J]. Journal on Communications, 2017, 38(7): 11–17. doi: 10.11959/j.issn.1000-436x.2017141
    [66]
    QIAO Gang, LIU Songzuo, SUN Zongxin, et al. Full-duplex, multi-user and parameter reconfigurable underwater acoustic communication modem[C]. 2013 OCEANS, San Diego, USA, 2013: 1–8.
    [67]
    刘凇佐. 仿生隐蔽水声通信技术研究[D]. [博士论文], 哈尔滨工程大学, 2014.

    LIU Songzuo. Research on bionic covert underwater acoustic communication technology[D]. [Ph. D. dissertation], Harbin Engineering University, 2014. doi: 10.7666/d.D595367.
    [68]
    QU Fengzhong, YANG Liuqing, and YANG T C. High reliability direct-sequence spread spectrum for underwater acoustic communications[C]. OCEANS 2009, Biloxi, USA, 2009: 1–6. doi: 10.23919/OCEANS.2009.5422362.
    [69]
    LIU Songzuo, QIAO Gang, and ISMAIL A. Covert underwater acoustic communication using dolphin sounds[J]. The Journal of the Acoustical Society of America, 2013, 133(4): EL300–EL306. doi: 10.1121/1.4795219
    [70]
    马天龙, 刘淞佐, 乔钢, 等. 基于频移键控的仿海豚哨声水声通信技术[J]. 电子与信息学报, 2022, 44(6): 2045–2053. doi: 10.11999/JEIT211322

    MA Tianlong, LIU Songzuo, QIAO Gang, et al. Bionic underwater acoustic communication by mimicking dolphin whistle based on frequency shift keying[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2045–2053. doi: 10.11999/JEIT211322
    [71]
    宋忠长, 张宇, 魏翀, 等. 齿鲸生物声呐发射特性与波束调控研究[J]. 物理学报, 2020, 69(15): 154301. doi: 10.7498/aps.69.20200406

    SONG Zhongchang, ZHANG Yu, WEI Chong, et al. Biosonar emission characteristics and beam control of odontocetes[J]. Acta Physica Sinica, 2020, 69(15): 154301. doi: 10.7498/aps.69.20200406
    [72]
    JIANG Jiajia, MIAO Yu, LI Yao, et al. Bionic covert anti-reverberation active sonar detection method based on imitating whale whistles[J]. Journal of Measurement Science and Instrumentation, 2022, 13(2): 127–137. doi: 10.3969/j.issn.1674-8042.2022.02.001
    [73]
    青昕. 典型鲸豚捕猎行为中生物声呐工作机理研究[D]. [博士论文], 哈尔滨工程大学, 2021. doi: 10.27060/d.cnki.ghbcu.2021.000033.

    QING Xin. Research on the mechanisms of biosonar operation in the representative hunting behaviour of cetaceans[D]. [Ph. D. dissertation], Harbin Engineering University, 2021. doi: 10.27060/d.cnki.ghbcu.2021.000033.
    [74]
    曾祥文, 陈国璐. 基于TDMA的水下MAC协议时隙参数计算研究[J]. 网络安全技术与应用, 2021(7): 45–47.

    ZENG Xiangwen and CHEN Guolu. Research on time slot parameter calculation of underwater MAC protocol based on TDMA[J]. Network Security Technology & Application, 2021(7): 45–47.
    [75]
    FENG Xiao, ESMAIEL H, WANG Junfeng, et al. Underwater acoustic communications based on OTFS[C]. The 2020 15th IEEE International Conference on Signal Processing, Beijing, China, 2020: 439–444.
    [76]
    周锋, 夏凡, 乔钢, 等. 分布式水下组网MAC协议的设计与仿真[J]. 哈尔滨工程大学学报, 2021, 42(6): 872–878. doi: 10.11990/jheu.202007039

    ZHOU Feng, XIA Fan, QIAO Gang, et al. Design and simulation of the MAC protocol for distributed underwater networking[J]. Journal of Harbin Engineering University, 2021, 42(6): 872–878. doi: 10.11990/jheu.202007039
    [77]
    AKYILDIZ I F, POMPILI D, and MELODIA T. State of the art in protocol research for underwater acoustic sensor networks[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2007, 11(4): 11–22. doi: 10.1145/1347364.1347371
    [78]
    吕曜辉, 杜鹏宇, 张宏滔, 等. 基于混沌正交组合序列的M元码分多址水声通信[J]. 声学技术, 2018, 37(1): 32–37. doi: 10.16300/j.cnki.1000-3630.2018.01.006

    LÜ Yaohui, DU Pengyu, ZHANG Hongtao, et al. M-ary code division multiple access underwater acoustic communication based on chaotic orthogonal combination sequence[J]. Technical Acoustics, 2018, 37(1): 32–37. doi: 10.16300/j.cnki.1000-3630.2018.01.006
    [79]
    GIBSON J H, XIE G G, XIAO Yang, et al. Analyzing the performance of multi-hop underwater acoustic sensor networks[C].OCEANS 2007, Aberdeen, UK, 2007: 1–6. doi: 10.1109/oceanse.2007.4302367.
    [80]
    张阳, 肖星星, 普湛清, 等. 一种基于冲突解析的水声网络ALOHA协议[J]. 网络新媒体技术, 2018, 7(1): 40–46. doi: 10.3969/j.issn.2095-347X.2018.01.007

    ZHANG Yang, XIAO Xingxing, PU Zanqing, et al. A conflict resolution based ALOHA protocol for underwater acoustic networks[J]. Journal of Network New Media, 2018, 7(1): 40–46. doi: 10.3969/j.issn.2095-347X.2018.01.007
    [81]
    CHEN Keyu, MA Maode, CHEN En, et al. A survey on MAC protocols for underwater wireless sensor networks[J]. IEEE Communications Surveys & Tutorials, 2014, 16(3): 1433–1447. doi: 10.1109/surv.2014.013014.00032
    [82]
    PETRIOLI C, PETROCCIA R, and STOJANOVIC M. A comparative performance evaluation of MAC protocols for underwater sensor networks[C]. OCEANS 2008, Quebec City, Canada, 2008: 1–10.
    [83]
    曲思潼, 吴朝慧, 叶旅洋, 等. 基于水声链路的UUV之间测距授时体制[J]. 通信技术, 2021, 54(6): 1356–1362. doi: 10.3969/j.issn.1002-0802.2021.06.011

    QU Sitong, WU Zhaohui, YE Lvyang, et al. UUV ranging and timing system based on underwater link[J]. Communications Technology, 2021, 54(6): 1356–1362. doi: 10.3969/j.issn.1002-0802.2021.06.011
    [84]
    张阳, 张扬帆, 黄海宁. 延迟利用的多节点协同预约式水声网络MAC协议[J]. 声学技术, 2017, 36(4): 320–326. doi: 10.16300/j.cnki.1000-3630.2017.04.005

    ZHANG Yang, ZHANG Yangfan, and HUANG Haining. Propagation delay utilized MAC protocol in underwater acoustic networks[J]. Technical Acoustics, 2017, 36(4): 320–326. doi: 10.16300/j.cnki.1000-3630.2017.04.005
    [85]
    白卫岗. 水声通信网络组网协议关键技术研究[D]. [博士论文], 西北工业大学, 2018.

    BAI Weigang. Study on the key techniques of underwater acoustic communication network protocols[D]. [Ph. D. dissertation], Northwestern Polytechnical University, 2018.
    [86]
    KHALID M, ULLAH Z, AHMAD N, et al. A survey of routing issues and associated protocols in underwater wireless sensor networks[J]. Journal of Sensors, 2017, 2017: 7539751. doi: 10.1155/2017/7539751
    [87]
    XIE Peng, CUI Junhong, and LAO Li. VBF: Vector-based forwarding protocol for underwater sensor networks[C]. The 5th International Conference on Research in Networking, Coimbra, 2006: 1216–1221.
    [88]
    曹歌. 基于地理位置的水声传感器网络路由协议研究[D]. [硕士论文], 哈尔滨工程大学, 2021.

    CAO Ge. Research on the routing protocol of underwater acoustic sensor network based on geographic location[D]. [Master dissertation], Harbin Engineering University, 2021.
    [89]
    NICOLAOU N, SEE A, XIE Peng, et al. Improving the robustness of location-based routing for underwater sensor networks[C]. OCEANS 2007, Aberdeen, UK, 2007: 1–6. doi: 10.1109/OCEANSE.2007.4302470.
    [90]
    JORNET J M, STOJANOVIC M, and ZORZI M. Focused beam routing protocol for underwater acoustic networks[C]. The 3rd International Workshop on Underwater Networks, San Francisco, USA, 2008: 75–82.
    [91]
    HWANG D and KIM D. DFR: Directional flooding-based routing protocol for underwater sensor networks[C]. OCEANS 2008, Quebec, Canada, 2008: 1–7.
    [92]
    YAN Hai, SHI Z J, and CUI Junhong, DBR: Depth-based routing for underwater sensor networks[C]. The 7th International Conference on Research in Networking, Singapore, 2008: 72–86.
    [93]
    DIAO Boyu, XU Yongjun, AN Zhulin, et al. Improving both energy and time efficiency of depth-based routing for underwater sensor networks[J]. International Journal of Distributed Sensor Networks, 2015, 2015: 8. doi: 10.1155/2015/781932
    [94]
    林灿. 基于强化学习的MAC协议与跨层设计研究[D]. [硕士论文], 厦门大学, 2020.

    LIN Can. Research on MAC protocol based on reinforcement learning and cross-layer design[D]. [Master dissertation], Xiamen University, 2020.
    [95]
    尹艳玲. 水声通信网络多载波通信与跨层设计[D]. [博士论文], 哈尔滨工程大学, 2016.

    YIN Yanling. Underwater acoustic network multicarrier communication and cross-layer design[D]. [Ph. D. dissertation], Harbin Engineering University, 2016.
    [96]
    SUN Yao, GE Wei, LI Yingsong, et al. Cross-layer protocol based on directional reception in underwater acoustic wireless sensor networks[J]. Journal of Marine Science and Engineering, 2023, 11(3): 666. doi: 10.3390/jmse11030666
    [97]
    许肖梅, 邹哲光. 水声网络中的跨层设计研究[J]. 声学技术, 2012, 31(3): 239–244. doi: 10.3969/j.issn.1000-3630.2012.03.002

    XU Xiaomei and ZOU Zheguang. Research on the cross-layer design of underwater acoustic networks[J]. Technical Acoustics, 2012, 31(3): 239–244. doi: 10.3969/j.issn.1000-3630.2012.03.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (1803) PDF downloads(707) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return