Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Advanced Search
Volume 44 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
Wang Qi, Wang Yan-fei. Moving Target Detection with Short Time FFT for SAR[J]. Journal of Electronics & Information Technology, 2006, 28(4): 628-631.
Citation: LIN Min, ZHU Liwen, KONG Huaicong, GUO Kefeng, OUYANG Jian. Outage Performance Analysis of Unmanned Aerial Vehicle Assisted Satellite Communication System with Cooperative Non-Orthogonal Multiple Access[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3033-3042. doi: 10.11999/JEIT211289

Outage Performance Analysis of Unmanned Aerial Vehicle Assisted Satellite Communication System with Cooperative Non-Orthogonal Multiple Access

doi: 10.11999/JEIT211289
Funds:  The National Natural Science Foundation of China(62001517), The Key International Cooperation Research Project(61720106003), The Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX21_0739), NJUPTSF (NY220111)
  • Received Date: 2021-11-18
  • Rev Recd Date: 2022-06-22
  • Available Online: 2022-07-01
  • Publish Date: 2022-09-19
  • Multi-user transmission system combined multi-antenna beamforming with cooperative Non-Orthogonal Multiple Access (NOMA) technique is investigated for Unmanned Aerial Vehicle (UAV) assisted satellite communication system. Firstly, in case that UAV employs multi-antenna and NOMA technique to serve multiple users, a beamforming scheme is proposed to maximize the average signal-to-interference-plus-noise ratio by using angle information of users. Secondly, under the condition that the satellite - UAV link follows the correlated Shadowed-Rician fading while the UAV - terrestrial link follows Nakagami-m fading, the closed-form expressions of outage probability for system are derived. Furthermore, the asymptotic outage probability formulas in the high signal-to-noise ratio regime are also developed to analyze the system performance. Finally, computer simulations are provided to validate the correctness of the theoretical analysis and the superiority of the proposed scheme.
  • 卫星通信凭借其覆盖范围广、通信距离远、不受地理条件限制等众多优点,已经被广泛应用于偏远地区通信以及导航定位、抗震抢险等领域[1-3],并将成为下一代无线通信的关键技术之一。然而,卫星与地面用户之间存在大时延和大路径损耗以及遮蔽效应导致的视距传输受阻等问题,使得卫星系统的用户体验有时无法得到保证。在这种情况下,基于中继转发的星地协作传输技术被认为是提升卫星通信服务质量的有效手段之一[4]。在大多研究的星地协作传输网络中,通常采用地面中继将接收到的卫星信号转发给地面用户。例如,文献[5]研究了单用户场景下地面中继采用放大转发(Amplify and Forward, AF)协议的星地协作传输网络的误码性能与中断性能。进一步,针对地面多用户的星地协作传输网络,文献[6]在采用最优用户选择方案的情况下,推导得到用户的中断概率闭合表达式。需要指出的是,虽然使用地面中继可以建立卫星与地面用户之间的高质量通信链路,但对人口稀少的偏远地区而言,建造地面中继站存在高成本、低回报等问题,因此需要探索其他更加实用的解决方案[7]

    跟地面中继相比,无人机由于其机动性好、通信组网方式灵活等优势,作为空中中继协助卫星与地面用户通信[8],可以实现增强接收信号功率、提高系统容量等目的,并且得到了学术界和工业界的高度重视。例如,文献[9]研究了基于无人机中继转发的星地协作网络中多用户传输场景下系统的中断性能;文献[10]研究了无人机中继采用AF协议和多用户调度方案下的星地协作网络性能;文献[11]针对无人机辅助卫星通信系统,分析了系统的中断性能。然而,考虑到卫星服务用户数量越来越多,需要进一步提高系统资源利用率以及服务用户通信质量。现有的正交多址 (Orthogonal Multiple Access, OMA)技术已经无法满足上述需求。近年来,非正交多址(Non-Orthogonal Multiple Access, NOMA)技术以其可大大提高系统频谱资源利用率和用户公平性等独特优势,已经成为极具发展前景的新型多址技术[12]。在这种情况下,已经有学者研究如何将NOMA技术应用于卫星通信系统。例如,文献[13,14]研究了两用户场景下基于NOMA的星地协作传输系统性能;文献[15,16]针对基于NOMA的卫星通信系统中多用户传输场景,分析了系统性能;文献[17]针对基于NOMA的无人机辅助卫星通信系统,分析了无人机中继采用AF协议下的系统中断性能。

    总的来看,上述文献对星地协作传输网络进行了深入的研究,验证了中继协作技术能够显著提升卫星通信系统存在遮蔽效应下的性能,但是它们主要存在以下问题:一是大多数文献,例如文献[5]仅研究了单用户场景下星地协作传输网络的性能;二是虽然也有相关文献研究多用户场景,但是大多数文献,例如文献[6,10]都是在假设准确信道状态信息(Channel State Information, CSI)已知的情况下,研究了采用用户调度或空分多址(Space Division Multiple Access, SDMA)方案下星地协作传输网络的性能;三是将NOMA技术应用于卫星通信系统的大多数文献中,例如文献[13-16]都是采用地面中继将接收到的卫星信号转发给地面用户;四是虽然也有相关文献提出基于NOMA的无人机辅助卫星通信系统,但是大多数文献,例如文献[17]仅考虑无人机配置单天线且地面用户簇内仅包含远近两个用户的通信场景,没有充分利用空间资源和考虑卫星服务用户数量越来越多的实际情况。在这种情况下,本文针对无人机辅助的卫星通信系统下行链路,研究基于SDMA和协作NOMA相结合的多用户传输系统。首先,配置多根天线的无人机作为中继站辅助卫星通信,采用NOMA技术服务多个地面用户,并得到用户的输出信干噪比(Signal-to-Interference-plus-Noise Ratio, SINR)表达式。然后,建立以平均SINR最大化为准则的优化问题,并在无人机仅已知信道角度信息的情况下,得到无人机对卫星信号的接收波束成形权矢量。进一步,为了降低算法复杂度,提出基于角度信息的迫零波束成形方案,得到无人机对多个地面用户的发射波束成形权矢量。其次,在卫星-无人机链路服从相关阴影莱斯分布,而无人机-地面用户链路服从Nakagami-m分布的条件下,分别推导出系统的中断概率闭合表达式和近似表达式。最后,仿真结果验证了所提方案的优越性和理论分析的正确性。

    图1所示,本文研究无人机辅助的卫星通信系统下行链路,其中静止轨道卫星S通过无人机中继R转发信号,与地面用户D进行通信。假设卫星S采用点波束技术,无人机中继R配置N元的均匀直线阵(Uniform Linear Array, ULA),地面用户D配置单天线。为了实现多用户同时通信,将无人机覆盖范围内的地面用户中信道相关性强和信道增益差异大的用户划分为一簇[18],从而将地面用户划分为L簇,且簇内用户采用NOMA技术提高频谱利用率。跟针对单用户场景以及多用户场景下采用用户调度或SDMA方案的星地协作传输网络的文献相比[6,10],本文的研究更具一般性。为了便于理解,本文将首先介绍信道模型和信号模型,然后对所提的波束成形方案进行描述。

    图  1  系统模型图
    2.1.1   S-R信道模型

    在卫星通信中,为了克服远距离传输导致的大路径损耗,通常采用高增益的点波束技术。在这种情况下,将卫星的波束增益、电波传播过程中的自由空间损耗和小尺度衰落的影响加以考虑之后,卫星到无人机链路,即S-R链路信道矢量可以表示为

    hSR=ζSRgSR (1)

    其中,ζSR为信道系数,计算公式为ζSR=λGS/(4πdR),其中λ为波长,dR为卫星到无人机的距离,GS为卫星波束增益,通常建模为[19]

    GS=GmaxS(J1(us)2us+36J3(us)u3s)2 (2)

    其中,GmaxS为卫星波束的最大增益,J1()J3()分别表示1阶和3阶的第1类贝塞尔函数,且us=2.07123sinθS/2.07123sinθSsinθS,3dBsinθS,3dBθS是无人机偏离卫星波束最大增益方向的角度,θS,3dB是卫星波束的3 dB波束角度。

    此外,式(1)中gSR表示S-R链路的小尺度衰落,通常服从相关阴影莱斯分布[19],表示为

    gSR=ˉgSR+˜Φ1/122R˜gSR (3)

    其中,ˉgSR为直达径(Line-of-Sight, LoS)分量,表示为

    ˉgSR = ZSRa(θr) (4)

    其中,ZSR是一个服从Nakagami-m分布的随机变量,衰落参数为mR,平均功率为ΩR。此外,由于无人机配置了ULA,阵列导向矢量a(θr)由式(5)给出

    a(θr)=[1,exp(j2πλdesinθr),,exp(j(N1)2πλdesinθr)]T (5)

    其中,θr为卫星信号的到达角,de表示ULA的阵元间隔。此外,式(3)中˜Φ1/122R˜gSR表示多径导致的散射分量,˜ΦR表示空间相关矩阵(Spatial Correlation Matrix, SCM),˜gSRCN×1表示独立同分布的复高斯随机矢量˜gSRCN(0,2bIN)2b为散射分量的平均功率。

    2.1.2   R-D信道模型

    跟前面类似,考虑自由空间路径损耗以及小尺度衰落的影响,无人机与地面第l簇中第n个用户Dl,n之间的信道矢量可以表示为

    hl,n=Lgl,n (6)

    其中,L为自由空间路径损耗,其计算公式为L=λ/λ4πdl,n4πdl,ndl,n为无人机到地面用户Dl,n的距离。此外,gl,n为小尺度衰落,可以表示为[10]

    gl,n = ρl,na(θl,n) (7)

    其中,信道系数ρl,n是服从衰落参数为ml,n,平均功率为Ωl,n的Nakagami-m分布的随机变量。此外,a(θl,n)CN×1表示阵列的导向矢量,其中θl,n为无人机到地面用户Dl,n的离开角。

    图1所示,卫星首先将叠加信号xSR=Ll=1xl发送给无人机,无人机对接收信号进行波束成形后,其输出信号可以表示为

    yR=wHSR(hSRxSR+nSR)=wHSRhSRMn=1αl,nPSxl,nl +wHSRhSRLj=1,jlMk=1αj,kPSxj,k+wHSRnSR (8)

    其中,PS为卫星发射功率,xl,nxj,k分别为用户Dl,n与用户Dj.k的信号,αl,nαj,k分别为用户Dl,n与用户Dj.k的功率分配系数,满足Mn=1αl,n=1, Mk=1αj,k=1。此外,wSRCN×1是接收波束成形权矢量,nSRCN(0,σ2SRIN)为加性高斯白噪声(Additive White Gaussian Noise, AWGN)。

    与译码转发协议(Decode and Forward, DF)相比,AF协议是一种更加容易实现的中继协议[20],更加适用于本文基于无人机辅助的卫星通信场景。因此,无人机中继采用AF协议,通过固定增益因子G = PR/PR(E[PS|wHSRhSR|2]+σ2SR)(E[PS|wHSRhSR|2]+σ2SR)放大其接收信号后转发给地面用户,用户Dl,n的接收信号表示为

    yl,n=GhHl,nwlwHSRhSRMn=1αl,nPSxl,nl +GhHl,nwHSRhSRLj=1,jlMk=1wjαj,kPSxj,k+GhHl,nwlwHSRnSR+nl,n (9)

    其中,wlCN×1是无人机对第l簇的发射波束成形权矢量,PR是无人机中继的发射功率,nl,n是均值为0,方差为σ2l,n的AWGN。

    为了进一步消除簇内用户干扰,采用串行干扰消除(Successive Interference Cancellation, SIC)技术消除干扰。假设第l簇中用户的信道增益大小满足。针对无人机辅助的卫星通信系统下行链路,NOMA技术为信道质量差的用户分配较高的发送功率,而为信道质量好的用户分配较低的发送功率,由此用户 {D_{l,n}} 主要受到的干扰来自其他簇以及第l簇中信道质量差的用户,则第l簇中用户的功率分配系数大小满足{\alpha _{l,1}} \gt {\alpha _{l,2}} \gt \cdots \gt {\alpha _{l,M}}。因此接收端通过SIC技术消除簇内用户干扰后, {D_{l,n}} 的输出SINR为

    {\gamma _{l,n}} = \frac{{{{\bar \gamma }_{{\rm{SR}}}}{{\bar \gamma }_{l,n}}{\alpha _{l,n}}{{\left| {{\boldsymbol{w}}_{{\rm{SR}}}^{\rm{H}}{{\boldsymbol{g}}_{{\rm{SR}}}}} \right|}^2}{{\left| {{{\boldsymbol{g}}^{\rm{H}}_{l,n}}{{\boldsymbol{w}}_l}} \right|}^2}}}{{{{\bar \gamma }_{{\rm{SR}}}}{{\bar \gamma }_{l,n}}{{\left| {{\boldsymbol{w}}_{{\rm{SR}}}^{\rm{H}}{{\boldsymbol{g}}_{{\rm{SR}}}}} \right|}^2}\left( {\displaystyle\sum\limits_{i = n + 1}^M {{\alpha _{l,i}}} {{\left| {{{\boldsymbol{g}}^{\rm{H}}_{l,n}}{{\boldsymbol{w}}_l}} \right|}^2} + \displaystyle\sum\limits_{j = 1,j \ne l}^L {\sum\limits_{k = 1}^M {{\alpha _{j,k}}{{\left| {{{\boldsymbol{g}}^{\rm{H}}_{l,n}}{{\boldsymbol{w}}_j}} \right|}^2}} } } \right) + {{\bar \gamma }_{l,n}}{{\left| {{{\boldsymbol{g}}^{\rm{H}}_{l,n}}{{\boldsymbol{w}}_l}} \right|}^2} + {\varLambda _{{{\rm{SR}}} }}}} (10)

    其中,{\bar \gamma _{{\rm{SR}}}}{\text{ = }}{{{P_{\rm{S}}}\zeta _{{\rm{SR}}}^2} \mathord{\left/ {\vphantom {{{P_S}\zeta _{SR}^2} {\sigma _{SR}^2}}} \right. } {\sigma _{{\rm{SR}}}^2}}, {\bar \gamma _{l,n}}{\text{ = }}{{{P_{{\rm{R}}} }{{L'}^{{\text{ }}2}}} \mathord{\left/ {\vphantom {{{P_{R} }{{L'}^{{\text{ }}2}}} {\sigma _{l,n}^2}}} \right. } {\sigma _{l,n}^2}}, {\varLambda _{{\rm{SR}}}} = {\text{E}}\left[ {{{\bar \gamma }_{{{\rm{SR}}} }}{{\left| {{\boldsymbol{w}}_{{\rm{SR}}}^{\rm{H}}{{\boldsymbol{g}}_{{\rm{SR}}}}} \right|}^2}} \right] + 1

    在无线通信中,考虑到信道的随机性,一般通过使用户输出平均SINR最大来达到系统传输性能最优的目的。因此根据式(10),本文建立以用户输出平均SINR最大化为准则的优化问题,在数学上可以表示为[19]

    \begin{split} & \mathop {\max }\limits_{{{\boldsymbol{w}}_{{\rm{SR}}}},{{\boldsymbol{w}}_l}} {\text{ E}}\left[ {{\gamma _{l,n}}} \right] , \\ & \quad {\rm{s.t.}} {\text{ }}\left\| {{{\boldsymbol{w}}_{{\rm{SR}}}}} \right\| = 1{\text{ and }}\left\| {{{\boldsymbol{w}}_l}} \right\| = 1,l = 1, 2,\cdots ,L \end{split} (11)

    考虑到式(11)中 {\text{E}}\left[ {{\gamma _{l,n}}} \right] 是很难计算得到的,因此将其近似表示为[19]

    \begin{split} & {\text{E}}\left[ {{\gamma _{l,n}}} \right] \approx\\ & \frac{{{{{\rm{E}}}_{{{\boldsymbol{g}}_{\rm{SR}}},{{\boldsymbol{g}}_{l,n}}}}\left[ {{{\bar \gamma }_{\rm{SR}}}{{\bar \gamma }_{l,n}}{\alpha _{l,n}}{\boldsymbol{w}}_{\rm{SR}}^{\rm{H}}{{\boldsymbol{g}}_{\rm{SR}}}{\boldsymbol{g}}_{\rm{SR}}^{\rm{H}}{{\boldsymbol{w}}_{\rm{SR}}}{\boldsymbol{w}}_l^{\rm{H}} {{\boldsymbol{g}}_{l,n}}{\boldsymbol{g}}_{l,n}^{\rm{H}} {{\boldsymbol{w}}_l}} \right]}}{{{{{\rm{E}}}_{{{\boldsymbol{g}}_{\rm{SR}}},{{\boldsymbol{g}}_{l,n}}}}\left[ {{{\bar \gamma }_{{\rm{SR}} }}{{\bar \gamma }_{l,n}}{\boldsymbol{w}}_{\rm{SR}}^{\rm{H}}{{\boldsymbol{g}}_{\rm{SR}}}{\boldsymbol{g}}_{\rm{SR}}^{\rm{H}}{{\boldsymbol{w}}_{\rm{SR}}}\left( {\displaystyle\sum\limits_{i = n + 1}^M {{\alpha _{l,i}}} {\boldsymbol{w}}_l^{\rm{H}} {{\boldsymbol{g}}_{l,n}}{\boldsymbol{g}}_{l,n}^{\rm{H}} {{\boldsymbol{w}}_l} + \sum\limits_{j = 1,j \ne l}^L {\sum\limits_{k = 1}^M {{\alpha _{j,k}}} } {\boldsymbol{w}}_j^{\rm{H}} {{\boldsymbol{g}}_{l,n}}{\boldsymbol{g}}_{l,n}^{\rm{H}} {{\boldsymbol{w}}_j}} \right) + {{\bar \gamma }_{l,n}}{\boldsymbol{w}}_l^{\rm{H}} {{\boldsymbol{g}}_{l,n}}{\boldsymbol{g}}_{l,n}^{\rm{H}} {{\boldsymbol{w}}_l} + {\varLambda _{{\rm{SR}} }}} \right]}} \end{split} (12)

    于是,优化问题式(11)可以重新表示为

    \begin{split} & \mathop {\max }\limits_{{{\boldsymbol{w}}_{\rm{SR}}},{{\boldsymbol{w}}_l}}\\ & \frac{{{{\bar \gamma }_{\rm{SR}}}{{\bar \gamma }_{l,n}}{\alpha _{l,n}}{\boldsymbol{w}}_{\rm{SR}}^{\rm{H}}{{\boldsymbol{\varPhi }}_{{\rm{SR}} }}{{\boldsymbol{w}}_{\rm{SR}}}{\boldsymbol{w}}_l^{\rm{H}} {{\boldsymbol{\varPhi }}_{l,n}}{{\boldsymbol{w}}_l}}}{{{{\bar \gamma }_{\rm{SR}}}{{\bar \gamma }_{l,n}}{\boldsymbol{w}}_{\rm{SR}}^{\rm{H}}{{\boldsymbol{\varPhi }}_{{\rm{SR}} }}{{\boldsymbol{w}}_{\rm{SR}}}\left( {\displaystyle\sum\limits_{i = n + 1}^M {{\alpha _{l,i}}} {\boldsymbol{w}}_l^{\rm{H}} {{\boldsymbol{\varPhi }}_{l,n}}{{\boldsymbol{w}}_l} + \sum\limits_{j = 1,j \ne l}^L {\sum\limits_{k = 1}^M {{\alpha _{j,k}}} } {\boldsymbol{w}}_j^{\rm{H}} {{\boldsymbol{\varPhi }}_{l,n}}{{\boldsymbol{w}}_j}} \right) + {{\bar \gamma }_{l,n}}{\boldsymbol{w}}_l^{\rm{H}} {{\boldsymbol{\varPhi }}_{l,n}}{{\boldsymbol{w}}_l} + {{\bar \gamma }_{\rm{SR}}}{\boldsymbol{w}}_{\rm{SR}}^{\rm{H}}{{\boldsymbol{\varPhi }}_{{\rm{SR}} }}{{\boldsymbol{w}}_{{\rm{SR}} }} + 1}} , \\ & \quad {{\rm{s}}} .{\rm{t}}.{\text{ }}\left\| {{{\boldsymbol{w}}_{\rm{SR}}}} \right\| = 1,\;\left\| {{{\boldsymbol{w}}_l}} \right\| = 1,l = 1,2, \cdots ,L \\[-10pt] \end{split} (13)

    其中,{{\boldsymbol{\varPhi }}_{{\rm{SR}}}} = {{\rm E}_{{{\boldsymbol{g}}_{{\rm{SR}}}}}}\left[ {{{\boldsymbol{g}}_{{\rm{SR}}}}{\boldsymbol{g}}_{{\rm{SR}}}^{\rm{H}}} \right], {{\boldsymbol{\varPhi }}_{l,n}} = {{\rm E}_{{{\boldsymbol{g}}_{l,n}}}}\left[ {{{\boldsymbol{g}}_{l,n}}{\boldsymbol{g}}_{l,n}^{{\rm{H}}} } \right]分别为{{\boldsymbol{g}}_{{\rm{SR}}}}{{\boldsymbol{g}}_{l,n}}的信道相关矩阵(Channel Correlation Matrices, CCM),CCM通常由信道的多次采样统计得到。但是考虑到无人机能量受限的特性,本文假设仅已知S-R和R-D链路的信道角度信息{\theta _{r} } {\theta _{l,n}} ,相比于假设准确CSI已知带来的高反馈负载,仅获取信道角度信息可降低无人机的能耗。进一步,根据式(3)和式(7),可以计算得到{{\boldsymbol{\varPhi }}_{{\rm{SR}}}}{{\boldsymbol{\varPhi }}_{l,n}},分别表示为

    \qquad {{\boldsymbol{\varPhi }}_{{\rm{SR}}}} = \left( {{\varOmega _{{\rm{R}}} } + 2b} \right){\boldsymbol{a}}\left( {{\theta _r}} \right){{\boldsymbol{a}}^{{\rm{H}}} }\left( {{\theta _r}} \right) (14)
    \qquad {{\boldsymbol{\varPhi }}_{l,n}} = {\varOmega _{l,n}}{\boldsymbol{a}}\left( {{\theta _{l,n}}} \right){{\boldsymbol{a}}^{\rm{H}}}\left( {{\theta _{l,n}}} \right) (15)

    考虑到优化问题式(13)的目标函数随{\boldsymbol{w}}_{{\rm{SR}}}^{\rm{H}}{{\boldsymbol{\varPhi }}_{{\rm{SR}}}}{{\boldsymbol{w}}_{{\rm{SR}}}}单调递增,且{{\boldsymbol{w}}_{{\rm{SR}}}}{{\boldsymbol{w}}_l}相互独立。因此,我们首先利用阵列信号处理技术来获得归一化的无人机接收波束成形权矢量{{\boldsymbol{w}}_{{\rm{SR}}}}。然后,提出基于信道角度信息的迫零波束成形方案,得到无人机发射波束成形权矢量{{\boldsymbol{w}}_l}

    首先,建立优化问题式(16)获得归一化的无人机接收波束成形权矢量{{\boldsymbol{w}}_{{{\rm{SR}}} }}

    \begin{split} & \mathop {\max }\limits_{{{\boldsymbol{w}}_{{\rm{SR}}}}} {\text{ }}{\boldsymbol{w}}_{{\rm{SR}}}^{\rm{H}}{{\boldsymbol{\varPhi }}_{{\rm{SR}}}}{{\boldsymbol{w}}_{{\rm{SR}}}} , \\ & \quad {\rm{s.t}}.{\text{ }}\left\| {{{\boldsymbol{w}}_{{\rm{SR}}}}} \right\| = 1 \\ \end{split} (16)

    利用式(14),对优化问题式(16)求解可以得到无人机接收波束成形权矢量{\boldsymbol{w}}_{{\rm{SR}}}^*

    {\boldsymbol{w}}_{{\rm{SR}}}^* = \frac{{{\boldsymbol{a}}\left( {{\theta _r}} \right)}}{{\sqrt N }} (17)

    然后,将式(17)代入优化问题式(13),可以将优化问题式(13)简化为

    \begin{split} & \mathop {\max }\limits_{{{\boldsymbol{w}}_l}} {\text{ }}\frac{{{{\bar \gamma }_{\rm{SR}}}{{\bar \gamma }_{l,n}}{\alpha _{l,n}}Q{\boldsymbol{w}}_l^{\rm{H}} {{\boldsymbol{\varPhi }}_{l,n}}{{\boldsymbol{w}}_l}}}{{{{\bar \gamma }_{\rm{SR}}}{{\bar \gamma }_{l,n}}Q\left( {\displaystyle\sum\limits_{i = n + 1}^M {{\alpha _{l,i}}} {\boldsymbol{w}}_l^{\rm{H}} {{\boldsymbol{\varPhi }}_{l,n}}{{\boldsymbol{w}}_l} + \sum\limits_{j = 1,j \ne l}^L {\sum\limits_{k = 1}^M {{\alpha _{j,k}}} } {\boldsymbol{w}}_j^{\rm{H}} {{\boldsymbol{\varPhi }}_{l,n}}{{\boldsymbol{w}}_j}} \right) + N{{\bar \gamma }_{l,n}}{\boldsymbol{w}}_l^{\rm{H}} {{\boldsymbol{\varPhi }}_{l,n}}{{\boldsymbol{w}}_l} + {{\bar \gamma }_{\rm{SR}}}Q + N}},\\ & \quad {{\rm{s}}} .{\rm{t}}. {\text{ }}\left\| {{{\boldsymbol{w}}_l}} \right\| = 1,l = 1, 2,\cdots ,L \end{split} (18)

    其中,Q = {\boldsymbol{a}}^{{\rm{H}}}{\left( {{\theta _r}} \right) }{{\boldsymbol{\varPhi }}_{{\rm{SR}}}}{\boldsymbol{a}}\left( {{\theta _r}} \right)

    由于优化问题式(18)的目标函数中{{\boldsymbol{w}}_l}{{\boldsymbol{w}}_j}相互耦合,该问题数学上难以直接求解。于是,为了降低计算复杂度,本文提出一种次优方案。通过基于信道角度信息的迫零波束成形方案消除簇间干扰以实现无人机多波束全频率复用,提高系统频谱效率。因此优化问题式(18)可以重新表示为

    \begin{split} & \mathop {\max }\limits_{{{\boldsymbol{w}}_l}} {\text{ }}{\boldsymbol{w}}_l^{{\rm{H}}} {{\boldsymbol{\varPhi }}_{l,n}}{{\boldsymbol{w}}_l} , \\ & \quad{\rm{s.t}}. {\text{ }}{\boldsymbol{w}}_j^{{\rm{H}}} {{\boldsymbol{\varPhi }}_{l,n}}{{\boldsymbol{w}}_j} = 0,\forall j \ne l, \\ & \quad\left\| {{{\boldsymbol{w}}_l}} \right\| = 1,l = 1,2, \cdots ,L \\ \end{split} (19)

    利用式(15)并根据矩阵零空间理论,对优化问题式(19)进行求解可以得到 {\boldsymbol{w}}_l^*

    {\boldsymbol{w}}_l^*{\text{ = }}\frac{{{{\boldsymbol{\varPi }}_l}{\boldsymbol{a}}\left( {{\theta _{l,n}}} \right)}}{{\left\| {{{\boldsymbol{\varPi }}_l}{\boldsymbol{a}}\left( {{\theta _{l,n}}} \right)} \right\|}} (20)

    其中,{{\boldsymbol{H}}_l}{\text{ = }}\left[ {{{{\boldsymbol{\hat H}}}_1},{{{\boldsymbol{\hat H}}}_2}, \cdots ,{{{\boldsymbol{\hat H}}}_{l - 1}},{{{\boldsymbol{\hat H}}}_{l + 1}}, \cdots ,{{{\boldsymbol{\hat H}}}_L}} \right], {{\boldsymbol{\hat H}}_1} = \left. {\left[ {{\boldsymbol{a}} \left( {{\theta _{l,1}}} \right),} \right.{\boldsymbol{a}}\left( {{\theta _{l,2}}} \right), \cdots ,{\boldsymbol{a}}\left( {{\theta _{l,M}}} \right)} \right], {{\boldsymbol{\varPi }}_l} = {I_N} - {{\boldsymbol{H}}_l}{\left( {{\boldsymbol{H}}_l^{{\rm{H}}} {{\boldsymbol{H}}_l}} \right)^{ - 1}} {\boldsymbol{H}}_l^{{\rm{H}}}

    于是,将式(17)和式(20)代入式(10)后,用户 {D_{l,n}} 的输出SINR可以简化为

    {\gamma _{l,n}} = \frac{{{{\bar \gamma }_{{\rm{SR}}}}{{\bar \gamma }_{l,n}}{\alpha _{l,n}}{{\left| {{\rho _{l,n}}} \right|}^2}{{\left| {{\boldsymbol{a}}^{\rm{H}}{{\left( {{\theta _r}} \right)}}{{\boldsymbol{g}}_{{\rm{SR}}}}} \right|}^2}{{\left| {{\boldsymbol{a}}^{{\rm{H}}}{{\left( {{\theta _{l,n}}} \right)} }{{\boldsymbol{\varPi }}_l}{\boldsymbol{a}}\left( {{\theta _{l,n}}} \right)} \right|}^2}}}{{{{\bar \gamma }_{{\rm{SR}}}}{{\bar \gamma }_{l,n}}{{\left| {{\rho _{l,n}}} \right|}^2} \displaystyle\sum\limits_{i = n + 1}^M {{\alpha _{l,i}}} {{\left| {{\boldsymbol{a}}^{{\rm{H}}}{{\left( {{\theta _r}} \right)} }{{\boldsymbol{g}}_{{\rm{SR}}}}} \right|}^2}{{\left| {{\boldsymbol{a}}^{{\rm{H}}}{{\left( {{\theta _{l,n}}} \right)} }{{\boldsymbol{\varPi }}_l}{\boldsymbol{a}}\left( {{\theta _{l,n}}} \right)} \right|}^2} + N{{\bar \gamma }_{l,n}}{{\left| {{\rho _{l,n}}} \right|}^2}{{\left| {{\boldsymbol{a}}^{\rm{H}}{{\left( {{\theta _{l,n}}} \right)}}{{\boldsymbol{\varPi }}_l}{\boldsymbol{a}}\left( {{\theta _{l,n}}} \right)} \right|}^2} + {{\varLambda '}_{{{\rm{SR}}} }}}} (21)

    其中,{\varLambda '_{{\rm{SR}}}} = {\left\| {{{\boldsymbol{\pi }}_l}{\boldsymbol{a}}\left( {{\theta _{l,n}}} \right)} \right\|^2}\left\{ {{\rm E}\left[ {{{\bar \gamma }_{{{\rm{SR}}} }}{{\left| {{\boldsymbol{a}}{{\left( {{\theta _r}} \right)}^{\rm{H}}}{{\boldsymbol{g}}_{{{\rm{SR}}} }}} \right|}^2}} \right] + N} \right\}

    需要指出的是,跟大多数采用基于准确CSI的波束成形方案,例如文献[10]不同的是,本文利用信道角度信息进行波束成形设计,避免了信道估计和反馈等需要额外消耗无线资源的过程,从而更加适合于无人机通信场景。接下来,将进一步对系统的中断性能进行分析。

    中断概率是衡量无线通信服务质量(Quality of Service, QoS)的一项重要指标,定义为信号输出SINR低于某一特定门限值的概率。因此,根据式(21)用户 {D_{l,n}} 的中断概率表示为

    \begin{split} P_{{{\rm{out}}} }^{l,n} =&\Pr \left( {\frac{{{{\bar \gamma }_{{\rm{SR}} }}{{\bar \gamma }_{l,n}}{\alpha _{l,n}}{{\left| {{\rho _{l,n}}} \right|}^2}{{\left| {{\boldsymbol{a}}^{\rm{H}}{{\left( {{\theta _r}} \right)}}{{\boldsymbol{g}}_{\rm{SR}}}} \right|}^2}{{\left| {{\boldsymbol{a}}^{{\rm{H}}}{{\left( {{\theta _{l,n}}} \right)} }{{\boldsymbol{\varPi }}_l}{\boldsymbol{a}}\left( {{\theta _{l,n}}} \right)} \right|}^2}}}{{{{\bar \gamma }_{\rm{SR}}}{{\bar \gamma }_{l,n}}{{\left| {{\rho _{l,n}}} \right|}^2} \displaystyle\sum\limits_{i = n + 1}^M {{\alpha _{l,i}}} {{\left| {{\boldsymbol{a}}^{\rm{H}}{{\left( {{\theta _r}} \right)}}{{\boldsymbol{g}}_{\rm{SR}}}} \right|}^2}{{\left| {{\boldsymbol{a}}^{{\rm{H}}}{{\left( {{\theta _{l,n}}} \right)} }{{\boldsymbol{\varPi }}_l}{\boldsymbol{a}}\left( {{\theta _{l,n}}} \right)} \right|}^2} + N{{\bar \gamma }_{l,n}}{{\left| {{\rho _{l,n}}} \right|}^2}{{\left| {{\boldsymbol{a}}^{\rm{H}}{{\left( {{\theta _{l,n}}} \right)}}{{\boldsymbol{\varPi }}_l}{\boldsymbol{a}}\left( {{\theta _{l,n}}} \right)} \right|}^2} + {{\varLambda '}_{{\rm{SR}} }}}} \le {\gamma _{{\rm{th}},n}}} \right) \\ = &\underbrace {{F_X}\left( u \right)}_{{I_1}} + \underbrace {\int\limits_u^\infty {{F_{{Y_{l,n}}}} \left[ {{Y_{l,n}} \le \left( {\frac{{{\gamma _{{\rm{th}},n}}{{\left\| {{{\boldsymbol{\varPi }}_l}{\boldsymbol{a}}\left( {{\theta _{l,n}}} \right)} \right\|}^2}\left( {{{\varLambda ''}_{{{\rm{\rm{SR}}}} }} + N} \right)}}{{\left( {{{\bar \gamma }_{\rm{SR}}}{{\bar \gamma }_{l,n}}\left( {{\alpha _{l,n}} - {\gamma _{th,n}}\displaystyle\sum\limits_{i = n + 1}^M {{\alpha _{l,i}}} } \right)x - N{\gamma _{{\rm{th}},n}}{{\bar \gamma }_{l,n}}} \right) {{\left| {{\boldsymbol{a}}^{\rm{H}}{{\left( {{\theta _{l,n}}} \right)}}{{\boldsymbol{\varPi }}_l}{\boldsymbol{a}}\left( {{\theta _{l,n}}} \right)} \right|}^2}}}} \right)} \right]} {f_X} \left( x \right){\rm{d}}x}_{{I_2}}\\ \end{split} (22)

    其中,u = {{N{\gamma _{{\rm{th}},n}}}/ {{{\bar \gamma }_{{\rm{SR}}}}\left( {{\alpha _{l,n}} - {\gamma _{{\rm{th}},n}}\displaystyle\sum\nolimits_{i = n + 1}^M {{\alpha _{l,i}}} } \right)}}, A = {\bar \gamma _{{\rm{SR}}}}{\bar \gamma _{l,n}}\left( {{\alpha _{l,n}} - {\gamma _{{\rm{th}},n}}\displaystyle\sum\nolimits_{i = n + 1}^M {{\alpha _{l,i}}} } \right), X = \left| {\boldsymbol{a}}^{\rm{H}}{{\left( {{\theta _r}} \right)}} {{\boldsymbol{g}}_{{\rm{SR}}}} \right|^2, {Y_{l,n}} = {\left| {{\rho _{l,n}}} \right|^2}, {\varLambda ''_{{{\rm{SR}}} }} = {\rm E}\left[ {{{\bar \gamma }_{{\rm{SR}}}}{{\left| {{\boldsymbol{a}}{{\left( {{\theta _r}} \right)}^{{\rm{H}}} }{{\boldsymbol{g}}_{{\rm{SR}}}}} \right|}^2}} \right] + N

    为了进一步得到{I_1}的闭合表达式,首先需要得到随机变量X的概率密度函数(Probability Density Function, PDF),并进一步得到累积分布函数(Cumulative Distribution Function, CDF)。根据文献[19],随机变量X的PDF表达式可以表示为

    {f_X}\left( x \right) = {a_1}\exp \left( { - \frac{x}{{2{b_{{\rm{R}}} }}}} \right){}_1{F_1}\left( {{m_{\rm{R}}},1,{a_2}x} \right) (23)

    其中,{b_{\rm{R}}} = b{\left\| {{\boldsymbol{a}}^{{\rm{H}}}{{\left( {{\theta _r}} \right)} }{\boldsymbol{\tilde \varPhi }}_{{\rm{R}}} ^{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}} \right\|^2}, {}_1{F_1}\left( {{m_{\rm{R}}},1,{a_2}x} \right) = \exp \left( {{a_2}x} \right)\;\displaystyle\sum\nolimits_{{t_1} = 0}^{{m_{{\rm{R}}} } - 1} {\left[ {{{{{\left( {1 - {m_{{\rm{R}}} }} \right)}_{{t_1}}}\;{{\left( { - {a_2}x} \right)}^{{t_1}}}} \mathord{\left/ {\vphantom {{{{\left( {1 - {m_{{\rm{R}}} }} \right)}_{{t_1}}}{{\left( { - {a_2}x} \right)}^{{t_1}}}} {\left( {{t_1}!{{\left( 1 \right)}_{{t_1}}}} \right)}}} \right. } {\left( {{t_1}!{{\left( 1 \right)}_{{t_1}}}} \right)}}} \right]}{m_{\rm{R}}}为整数,{a_1}{a_2}分别表示为

    \begin{split} {a_1} =& {{{\left( {{{2{b_{{\rm{R}}} }{m_{\rm{R}}}}/{\left( {2{b_{\rm{R}}}{m_{{\rm{R}}} } + {{\left| {{\boldsymbol{a}}^{{\rm{H}}}{{\left( {{\theta _r}} \right)} }{\boldsymbol{a}}\left( {{\theta _r}} \right)} \right|}^2}{\varOmega _{{\rm{R}}} }} \right)}}} \right)}^{{m_{\rm{R}}}}}} \\ & \bigr/{\left( {2{b_{\rm{R}}}} \right)}\\[-10pt] \end{split} (24)
    \begin{split} {a_2} =& {{{\left| {{\boldsymbol{a}}^{\rm{H}}{{\left( {{\theta _r}} \right)}}{\boldsymbol{a}}\left( {{\theta _r}} \right)} \right|}^2}{\varOmega _{{\rm{R}}} }}\\ & \Bigr/{\left( {2{b_{\rm{R}}}\left( {2{b_{\rm{R}}}{m_{{\rm{R}}} } + {{\left| {{\boldsymbol{a}}^{{\rm{H}}}{{\left( {{\theta _r}} \right)} }{\boldsymbol{a}}\left( {{\theta _r}} \right)} \right|}^2}{\varOmega _{{\rm{R}}} }} \right)} \right)} \end{split} (25)

    进一步,可以得到随机变量X的CDF表达式

    \begin{split} {F_X}\left( x \right) =& {a_1}\sum\limits_{k = 0}^{{m_{\rm{R}}} - 1} {\frac{{{{\left( {1 - {m_{{\rm{R}}} }} \right)}_k}{{\left( { - {a_2}} \right)}^k}}}{{{{\left( \delta \right)}^{k + 1}}{{\left( 1 \right)}_k}}}}\\ & \cdot\left( {1 - \exp \left( { - \delta x} \right)\sum\limits_{n = 0}^k {\frac{{{{\left( \delta \right)}^n}}}{{n!}}{x^n}} } \right) \end{split} (26)

    其中,\delta = {1 /{\left( {2{b_{\rm{R}}}} \right) - {a_2}}}

    另一方面,由文献[21]中式(3.351.3)和式(23),可将式(22)中{\varLambda ''_{{{\rm{SR}}} }}进一步计算得到

    {\varLambda ''_{{{\rm{SR}}} }} = N + {\bar \gamma _{{\rm{SR}}}}{a_1}\sum\limits_{{t_2} = 0}^{{m_{\rm{R}}} - 1} {\frac{{{{\left( {1 - {m_{{\rm{R}}} }} \right)}_{{t_2}}}{{\left( { - {a_2}} \right)}^{{t_2}}}\left( {{t_2}{\text{ + }}1} \right)}}{{{{\left( 1 \right)}_{{t_2}}}{{\left( {{1/{\left( {2{b_{{\rm{R}}} }} \right) - {a_2}}}} \right)}^{{t_2} + 2}}}}} (27)

    接下来,为了计算{I_2}的闭合表达式,需要推导式(22)中 {F_{{Y_{l,n}}}}\left( y \right) 为随机变量 {Y_{l,n}} 的CDF。根据顺序统计量原理, {F_{{Y_{l,n}}}}\left( y \right) 可以表示为

    {F_{{Y_{l,n}}}}\left( y \right) = {b_n}\sum\limits_{h = 0}^{M - n} {\left( \begin{gathered} M - n \\ h \\ \end{gathered} \right)} \frac{{{{\left( { - 1} \right)}^h}}}{{n + h}}{\left[ {{F_{{{\left| {{\rho _{l,n}}} \right|}^2}}}\left( y \right)} \right]^{n + h}} (28)

    其中,{b_n} = {{M!} \mathord{\left/ {\vphantom {{M!} {\left( {\left( {n - 1} \right)!\left( {M - n} \right)!} \right)}}} \right. } {\left( {\left( {n - 1} \right)!\left( {M - n} \right)!} \right)}}。由于 {\left| {{\rho _{l,n}}} \right|^2} 服从伽马分布,因此 {F_{{{\left| {{\rho _{l,n}}} \right|}^2}}}\left( y \right) 表示为

    {F_{{{\left| {{\rho _{l,n}}} \right|}^2}}}\left( y \right) = 1 - \exp \left( { - \frac{{{m_{l,n}}y}}{{{\varOmega _{l,n}}}}} \right)\sum\limits_{l = 0}^{{m_{l,n}} - 1} {\frac{1}{{l!}}} {\left( {\frac{{{m_{l,n}}y}}{{{\varOmega _{l,n}}}}} \right)^l} (29)

    将式(29)代入式(28)中, {F_{{Y_{l,n}}}}\left( y \right) 可以进一步表示为

    \begin{split} {F_{{Y_{l,n}}}}\left( y \right)=& {b_n}\sum\limits_{h = 0}^{M - n} {\left( \begin{gathered} M - n \\ h \\ \end{gathered} \right)} \frac{{{{\left( { - 1} \right)}^h}}}{{n + h}}\sum\limits_{j = 0}^{n + h} \left( \begin{gathered} n + h \\ j \\ \end{gathered} \right)\\ & \cdot{{\left( { - 1} \right)}^j}\exp \left( { - \frac{{{m_{l,n}}yj}}{{{\varOmega _{l,n}}}}} \right)\\ & \cdot\left( {\sum\limits_{l = 0}^{{m_{l,n}} - 1} {\frac{1}{{l!}}} {{\left( {\frac{{{m_{l,n}}y}}{{{\varOmega _{l,n}}}}} \right)}^l}} \right) ^j\\[-25pt] \end{split} (30)

    将式(30)和式(23)(代入式(22)中,{I_2}可以表示为

    \begin{split} {I_2} =& {b_n}\sum\limits_{h = 0}^{M - n} {\left( \begin{gathered} M - n \\ h \\ \end{gathered} \right)} \frac{{{{\left( { - 1} \right)}^h}}}{{n + h}}{\sum\limits_{j = 0}^{n + h} {\left( \begin{gathered} n + h \\ j \\ \end{gathered} \right)\left( { - 1} \right)} ^j}\\ & \cdot \int\limits_u^\infty {\exp \left( { - \frac{{{m_{l,n}}{y_1}j}}{{{\varOmega _{l,n}}}}} \right)} \times {\left[ {\sum\limits_{l = 0}^{{m_{l,n}} - 1} {\frac{1}{{l!}}} {{\left( {\frac{{{m_{l,n}}{y_1}}}{{{\varOmega _{l,n}}}}} \right)}^l}} \right]^j}{a_1}\\ & \cdot\exp \left( { - \frac{x}{{2{b_{\rm{R}}}}}} \right){}_1{F_1}\left( {{m_{{\rm{R}}} },1,{a_2}x} \right){\rm{d}}x \\[-18pt] \end{split} (31)

    其中,{y_1} = {{{\gamma _{{\rm{th}},n}}{{\varLambda ''}_{{\rm{SR}}}}{Z_a}} / {\left( {Ax - N{\gamma _{{{\rm{th}}} ,n}}{{\bar \gamma }_{l,n}}} \right)}}, {Z_a} = {{{{{\left\| {{{\boldsymbol{\varPi }}_l}{\boldsymbol{a}}\left( {{\theta _{l,n}}} \right)} \right\|}^2}} / {\left| {{\boldsymbol{a}}^{\rm{H}}{{\left( {{\theta _{l,n}}} \right)}}{{\boldsymbol{\varPi }}_l}{\boldsymbol{a}}\left( {{\theta _{l,n}}} \right)} \right|}}^2}。另外,式(31)中求和项\displaystyle\sum\nolimits_{l = 0}^{{m_{l,n}} - 1} {{{{{\left( {{{{m_{l,n}}{y_1}} / {{\varOmega _{l,n}}}}} \right)}^l}}/ {l!}}}为一个\left( {{m_{l,n}} - 1} \right)次的多项式。由文献[21]中式(0.314),可以简化为

    {\left[ {\sum\limits_{l = 0}^{{m_{l,n}} - 1} {\frac{1}{{l!}}} {{\left( {\frac{{{m_{l,n}}{y_1}}}{{{\varOmega _{l,n}}}}} \right)}^l}} \right]^j}{\text{ = }}\sum\limits_{l = 0}^{j\left( {{m_{l,n}} - 1} \right)} {\left( {c_l^j{z^l}} \right)} (32)

    其中,z = {{{m_{l,n}}{y_1}}/{{\varOmega _{l,n}}}}。而c_l^j由式(33)—式(35)递归计算得

    c_0^j = 1,c_1^j = j,c_{j\left( {{m_{l,n}} - 1} \right)}^j = {\left( {\frac{1}{{\left( {{m_{l,n}} - 1} \right)!}}} \right)^j} (33)
    c_l^j = \frac{1}{l}\sum\limits_{{t_3} = 1}^{{J_0}} {\frac{{{t_3}\left( {j + 1} \right) - l}}{{{t_3}!}}} c_{l - {t_3}}^j (34)
    {J_0} = \min \left( {l,{m_{l,n}} - 1} \right),2 \le l \le j\left( {{m_{l,n}} - 1} \right) - 1 (35)

    将式(32)代入式(31)中,{I_2}进一步表示为

    \begin{split} {I_2} =& {b_n}\sum\limits_{h = 0}^{M - n} {\left( \begin{gathered} M - n \\ h \\ \end{gathered} \right)} \frac{{{{\left( { - 1} \right)}^h}}}{{n + h}}{\sum\limits_{j = 0}^{n + h} {\left( \begin{gathered} n + h \\ j \\ \end{gathered} \right)\left( { - 1} \right)} ^j}\\ & \cdot \int\limits_u^\infty {\exp \left( { - \frac{{{m_{l,n}}{y_1}j}}{{{\varOmega _{l,n}}}}} \right)} \sum\limits_{l = 0}^{j\left( {{m_{l,n}} - 1} \right)} {\left( {c_l^j{z^l}} \right)} \\ & \cdot {a_1}\exp \left( {\delta x} \right)\sum\limits_{{t_1} = 0}^{{m_{R} } - 1} {\frac{{{{\left( {1 - {m_R}} \right)}_{{t_1}}}{{\left( { - {a_2}x} \right)}^{{t_1}}}}}{{{t_1}!{{\left( 1 \right)}_{{t_1}}}}}} {\rm{d}}x \end{split} (36)

    令式(36)中B = Ax - N{\gamma _{{\rm{th}},n}}{\bar \gamma _{l,n}},并根据文献[21]中式(3.471.9),{I_2}的闭合式可以表示为

    \begin{split} {I_2} =& 2{a_1}{b_n}\sum\limits_{h = 0}^{M - n} {\sum\limits_{j = 0}^{n + h} {\sum\limits_{l = 0}^{j\left( {{m_{l,n}} - 1} \right)} {\left( \begin{gathered} M - n \\ h \\ \end{gathered} \right)} } } \left( \begin{gathered} n + h \\ j \\ \end{gathered} \right)\frac{{{{\left( { - 1} \right)}^{j + h}}c_l^j}}{{n + h}}{\left( {\frac{{{m_{l,n}}{\gamma _{{\rm{th}},n}}{{\varLambda ''}_{{{\rm{SR}}} }}{Z_a}}}{{{\varOmega _{l,n}}}}} \right)^l} \\ & \cdot\sum\limits_{{t_1} = 0}^{{m_R} - 1} {\sum\limits_{p = 0}^{{t_1}} {\left( \begin{gathered} {t_1} \\ p \\ \end{gathered} \right)} } \exp \left( { - \frac{{N{\gamma _{{\rm{th}},n}}{{\bar \gamma }_{l,n}}\delta }}{A}} \right)\frac{{{{\left( {1 - {m_{{\rm{R}}} }} \right)}_{{t_1}}}{{\left( { - {a_2}} \right)}^{{t_1}}}{{\left( {N{\gamma _{{\rm{th}},n}}{{\bar \gamma }_{l,n}}} \right)}^p}}}{{{t_1}!{{\left( 1 \right)}_{{t_1}}}{A^{{t_1} + 1}}}} \\ &\cdot {\left( {\frac{{jA{m_{l,n}}{\gamma _{{\rm{th}},n}}{\varLambda ''_{{{\rm{SR}}} }}{Z_{a} }}}{{{\varOmega _{l,n}}\delta }}} \right)^{\frac{{{t_1} - l - p}}{2}}}{K_{{t_1} - l - p}}\left( {2\sqrt {\frac{{j{m_{l,n}}{\gamma _{{\rm{th}},n}}{\varLambda ''_{{{\rm{SR}}} }}\delta {Z_a}}}{{{\varOmega _{l,n}}A}}} } \right) \end{split} (37)

    将式(23)、式(26)和式(37)代入式(22),用户 {D_{l,n}} 的中断概率闭合表达式最终表示为

    \begin{split} P_{{{\rm{out}}} }^{l,n} =& {a_1}\sum\limits_{k = 0}^{{m_{\rm{R}}} - 1} {\frac{{{{\left( {1 - {m_{\rm{R}}}} \right)}_{{\rm{R}}} }{{\left( { - {a_2}} \right)}^k}}}{{{\delta ^{k + 1}}{{\left( 1 \right)}_k}}}} \times \left( {1 - \exp \left( { - \frac{{N{\gamma _{{\rm{th}},n}}\delta }}{{{{\bar \gamma }_{{{\rm{SR}}} }}\left( {{\alpha _{l,n}} - {\gamma _{{\rm{th}},n}}\displaystyle\sum\limits_{i = n + 1}^M {{\alpha _{l,i}}} } \right)}}} \right)} \right. \\ & \left. { \times \sum\limits_{n = 0}^k {\frac{1}{{n!}}} {{\left( {\frac{{N{\gamma _{{\rm{th}},n}}\delta }}{{{{\bar \gamma }_{{{\rm{SR}}} }}\left( {{\alpha _{l,n}} - {\gamma _{{\rm{th}},n}}\displaystyle\sum\limits_{i = n + 1}^M {{\alpha _{l,i}}} } \right)}}} \right)}^n}} \right) + 2{a_1}{b_n}\displaystyle\sum\limits_{h = 0}^{M - n} {\sum\limits_{j = 0}^{n + h} {\displaystyle\sum\limits_{l = 0}^{j\left( {{m_{l,n}} - 1} \right)} {\left( \begin{gathered} M - n \\ h \\ \end{gathered} \right)} } } \\ & \times \left( \begin{gathered} n + h \\ j \\ \end{gathered} \right)\frac{{{{\left( { - 1} \right)}^{j + h}}c_l^j}}{{n + h}}{\left( {\frac{{{m_{l,n}}{\gamma _{{\rm{th}},n}}{\varLambda ''_{{{\rm{SR}}} }}{Z_a}}}{{{\varOmega _{l,n}}}}} \right)^l}\exp \left( { - \frac{{{\gamma _{{\rm{th}},n}}{\varLambda ''_{{{\rm{SR}}} }}\delta }}{A}} \right) \\ & \times \sum\limits_{{t_1} = 0}^{{m_{\rm{R}}} - 1} {\sum\limits_{p = 0}^{{t_1}} {\frac{{{{\left( {1 - {m_{\rm{R}}}} \right)}_{{t_1}}}{{\left( { - {a_2}} \right)}^{{t_1}}}{{\left( {{\gamma _{{\rm{th}},n}}{{\bar \gamma }_{l,n}}} \right)}^p}}}{{{t_1}!{{\left( 1 \right)}_{{t_1}}}{A^{{t_1} + 1}}}}} } {\left( {\frac{{jA{m_{l,n}}{\gamma _{{\rm{th}},n}}{\varLambda ''_{{{\rm{SR}}} }}{Z_{a} }}}{{{\varOmega _{l,n}}\delta }}} \right)^{\frac{{{t_1} - l - p}}{2}}} \\ & \times {K_{{t_1} - l - p}}\left( {2\sqrt {\frac{{j{m_{l,n}}{\gamma _{{\rm{th}},n}}{\varLambda ''_{{{\rm{SR}}} }}\delta {Z_a}}}{{{\varOmega _{l,n}}A}}} } \right) \end{split} (38)

    为了进一步揭示关键参数与系统性能之间的影响,在得到中断概率闭合表达式的基础上,进一步讨论高信噪比下中断概率的渐进表达式。用户 {D_{l,n}} 中断概率的近似表达式表示为

    P_{{{\rm{out}}} }^\infty = \underbrace {F_X^\infty \left( u \right)}_{I_1^\infty } + \underbrace {\int\limits_u^\infty {F_{{Y_{l,n}}}^\infty \left[ {{Y_{l,n}} \le \left( {\frac{{{\gamma _{{\rm{th}},n}}{Z_a}\left( {{\varLambda ''_{{{\rm{SR}}} }} + N} \right)}}{{\left( {{{\bar \gamma }_{{\rm{SR}}}}{{\bar \gamma }_{l,n}}\left( {{\alpha _{l,n}} - {\gamma _{{\rm{th}},n}}\displaystyle\sum\limits_{i = n + 1}^M {{\alpha _{l,i}}} } \right)x - N{\gamma _{{\rm{th}},n}}{{\bar \gamma }_{l,n}}} \right)}}} \right)} \right]} f_X^\infty \left( x \right){\rm{d}}x}_{I_2^\infty } (39)

    对式(23)进行级数展开,可以得到

    f_X^\infty \left( x \right) \approx {a_1} (40)

    进一步得到X的CDF渐进表达式,即表示为

    F_X^\infty \left( x \right) = \int\limits_0^x {f_X^\infty \left( t \right)} {\rm{d}}t \approx {a_1}x (41)

    由式(29),F_{{{\left| {{\rho _{l,n}}} \right|}^2}}^\infty \left( y \right)可以表示为

    F_{{{\left| {{\rho _{l,n}}} \right|}^2}}^\infty \left( y \right) \approx {\left( {\frac{{{m_{l,n}}y}}{{{\varOmega _{l,n}}}}} \right)^{{m_{l,n}}}}\frac{1}{{\varGamma \left( {{m_{l,n}} + 1} \right)}} (42)

    将式(42)代入式(28)中,可以进一步得到 F_{{Y_{l,n}}}^\infty \left( y \right) 表示为

    F_{{Y_{l,n}}}^\infty \left( y \right) \approx \frac{{{b_n}}}{n}\frac{1}{{{\varGamma ^n}\left( {{m_{l,n}} + 1} \right)}}{\left( {\frac{{{m_{l,n}}y}}{{{\varOmega _{l,n}}}}} \right)^{{m_{l,n}} + n}} (43)

    根据式(40)和式(43),I_2^\infty 进一步表示为

    \begin{split} I_2^\infty \approx & \frac{{{b_n}}}{n}\frac{{{a_1}}}{{{\varGamma ^n}\left( {{m_{l,n}} + 1} \right)}}{\left( {\frac{{{m_{l,n}}{\gamma _{{\rm{th}},n}}{{\varLambda ''}_{{{\rm{SR}}} }}{Z_a}}}{{{\varOmega _{l,n}}}}} \right)^{{m_{l,n}} + n}}\\ & \int\limits_u^\infty {{{\left( {Ax - N{\gamma _{{\rm{th}},n}}{{\bar \gamma }_{l,n}}} \right)}^{ - {m_{l,n}} - n}}{\rm{d}}x}\\[-21pt] \end{split} (44)

    其中,{\varLambda ''_{{{\rm{SR}}} }} \approx N + \dfrac{{{{\bar \gamma }_{{{\rm{SR}}} }}{a_1}}}{{{\delta ^2}}},积分部分\displaystyle\int_u^\infty \left( Ax - N{\gamma _{{\rm{th}},n}}{{\bar \gamma }_{l,n}} \right)^{ - {m_{l,n}} - n}{\rm{d}}x可以进一步表示为

    \zeta \text=\left\{\begin{aligned} & \frac{1}{\left({\alpha }_{l,n}-{\gamma }_{{\rm{th}},n}{\displaystyle \sum _{i=n+1}^{N}{\alpha }_{l,i}}\right){\overline{\gamma }}_{{\rm{SR}}}},\qquad\qquad\qquad\qquad\; n+{m}_{l,n}-1=1\\ &\frac{{\overline{\gamma }}_{l,n}{}^{n+{m}_{l,n}-2}}{\left({\alpha }_{l,n}-{\gamma }_{{\rm{th}},n}{\displaystyle \sum _{i=n+1}^{N}{\alpha }_{l,i}}\right){\overline{\gamma }}_{\mathrm{SR}}}\cdot\dfrac{1}{\left(n+{m}_{l,n}-1\right)},\text{   }n+{m}_{l,n}-1 > 1\end{aligned} \right. (45)

    将式(41)、式(44)和式(45)代入式(39)中,得到中断概率渐进表达式为

    \begin{split} P_{{{\rm{out}}} }^\infty =& \frac{{{a_1}N{\gamma _{{\rm{th}},n}}}}{{\left( {{\alpha _{l,n}} - {\gamma _{{\rm{th}},n}}\displaystyle\sum\limits_{i = n + 1}^N {{\alpha _{l,i}}} } \right){{\bar \gamma }_{{\rm{SR}}}}}}\\ & {\text{ + }}\frac{{{b_n}}}{n}\frac{{{a_1}\zeta }}{{{\varGamma ^n}\left( {{m_{l,n}} + 1} \right)}}{\left( {\frac{{{m_{l,n}}{\gamma _{th,n}}{{\varLambda ''}_{{{\rm{SR}}} }}{Z_{{\rm{a}}} }}}{{{\varOmega _{l,n}}}}} \right)^{{m_{l,n}} + n}} \end{split} (46)

    假设{\bar \gamma _{{\rm{SR}}}} = {\bar \gamma _{l,n}} = \bar \gamma。当\bar \gamma \to \infty 时,中断概率的渐进表达式为[20]

    P_{{{\rm{out}}} }^\infty \left( {{\gamma _{{\rm{th}},n}}} \right){\text{ = }}{\left( {{G_{\rm{a}}}\bar \gamma } \right)^{ - {G_{\rm{d}}}}} + o\left( {{{\bar \gamma }^{ - {G_{\rm{d}}}}}} \right) (47)

    其中,{G_{\rm{a}}}{G_{\rm{d}}}分别表示系统的阵列增益和分集度。则式(46)可以改写为

    P_{{{\rm{out}}} }^\infty {\text{ = }}\varTheta \left( {\frac{1}{{\bar \gamma }}} \right){\text{ + }}o\left( {\frac{1}{{\bar \gamma }}} \right) (48)

    其中

    \varTheta \text=\left\{\begin{aligned} & \frac{{a}_{1}}{\left({\alpha }_{l,n}-{\gamma }_{{\rm{th}},n}{\displaystyle \sum _{i=n+1}^{N}{\alpha }_{l,i}}\right)}\left(1\text+\frac{{\gamma }_{{\rm{th}},n}{b}_{n}}{{\varGamma }^{n}\left({m}_{l,n}+1\right)n}{\left(\frac{{m}_{l,n}{\gamma }_{{\rm{th}},n}{Z}_{a}}{{\varOmega }_{l,n}}\right)}^{{m}_{l,n}+n}\right),\; n+{m}_{l,n}-1=1\\ & \frac{{a}_{1}N{\gamma }_{{\rm{th}},n}}{\left({\alpha }_{l,n}-{\gamma }_{{\rm{th}},n}{\displaystyle \sum _{i=n+1}^{N}{\alpha }_{l,i}}\right)},\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad n+{m}_{l,n}-1 > 1\end{aligned} \right. (49)

    于是,系统的分集度和阵列增益分别为

    {G_{\rm{d}}} = 1 (50)
    {G_{\rm{a}}} = \varTheta (51)

    从以上可以看出,卫星到无人机中继以及无人机中继到地面用户的链路信道参数只影响系统的阵列增益,而对系统的分集度不产生影响。

    本节通过计算机仿真验证理论分析的正确性,同时定量分析了系统参数对卫星通信系统性能的影响。此外,为了验证本文所提传输方案的优越性,还跟传统的OMA方案和文献[17]中的方案进行对比。其中OMA方案是一个用户独占一个时间/频率资源块,文献[17]采用无人机配置单天线且簇内仅包含远近两个用户的下行NOMA传输方案。仿真中考虑系统包含6个用户,将所有地面用户分为两个簇,每个簇包含3个用户。假设S-R链路经历中度阴影衰落,信道参数为\left\{ {{m_{\rm{R}}},b,{\varOmega _{\rm{R}}}} \right\} = \left\{ 5,0.126, 0.835 \right\},而R-D链路服从Nakagami-m分布,衰落参数为\left\{ {{m_{l,1}},{m_{l,2}},{m_{l,3}}} \right\} = \left\{ {2,4,6} \right\}, \left\{ {{\varOmega _{l,1}},{\varOmega _{l,2}},{\varOmega _{l,3}}} \right\} = \left\{ 2,2, 2 \right\}。此外,假设{P_{\rm{S}}} = {P_{\rm{R}}} = P,噪声功率\sigma _{{\rm{SR}}}^2 = \sigma _{l,n}^2 = \kappa {\rm{BT}}, \kappa = 1.38 \times {10^{ - 23}}\;{{\rm{J}}/{\rm{K}}}为Boltzmann常数。其他主要的仿真参数设置见表1

    表  1  系统的参数设置
    参数数值
    卫星波束最大增益G_{\rm{S}}^{{\rm{max}}}{\text{ } }\left( { {\text{dB} } } \right)53
    3 dB角度{\theta _{ { {\rm{S} } } ,3\;{\text{dB} } } }(o)0.4
    带宽B{\text{ }}\left( {{\text{MHz}}} \right)5
    无人机与地面用户间距离{d_{l,n}}{\text{ }}\left( {\text{m}} \right)500
    噪声温度T{\text{ }}\left( {\text{K}} \right)300
    下载: 导出CSV 
    | 显示表格

    图2给出了第2个簇中3个用户的中断概率随发射功率P的变化情况。仿真中假设无人机配置天线数为N = 8,无人机到用户的离开角为\left\{ {{\theta _{2,1}},{\theta _{2,2}},{\theta _{2,3}}} \right\} = \left\{ {{{45}^\circ},{{60}^\circ},{{75}^\circ}} \right\}{\text{ }},功率分配系数为\left\{ {{\alpha _{2,1}},{\alpha _{2,2}},{\alpha _{2,3}}} \right\} = \left\{ {0.6,0.3,0.1} \right\},目标速率为\left\{ {{R_{{\rm{th1}}}},{R_{{\rm{th2}}}},{R_{{\rm{th3}}}}} \right\} = \left\{ 0.65, 1.2, 2.4 \right\}{{ {\rm{bit}}/({\rm{s}}\cdot{\rm{Hz}})}}。从图2可以看出Monte Carlo仿真结果与系统的理论值相吻合,证明了系统理论分析的正确性。

    图  2  不同用户中断概率随发射功率P的变化情况

    图3给出了不同发射功率P的情况下,用户{D_{2,3}}的中断概率随目标速率R的变化情况,仿真中P分别取0{\text{ dBW}}3{\text{ dBW}}。从中可以看出,NOMA方案下的用户{D_{2,3}}中断性能明显优于OMA方案。另外,在P{\text{ = }}3{\text{ dBW}}条件下系统的中断性能优于P{\text{ = }}0{\text{ dBW}},这与图2中用户中断概率随发射功率P的增大而减小的结论是相符合的。

    图  3  不同发射功率P下用户{D_{2,3}}中断概率随目标速率的变化情况

    图4为改变无人机配置天线数的条件下,用户{D_{2,3}}中断概率随发射功率P的变化曲线,并与传统的OMA方案和文献[17]的方案进行比较。仿真中无人机配置天线数分别为N = 8N = 16。从中可以看出,无人机配置天线数目越多,用户 {D_{2,3}} 中断性能越好。这是因为多天线技术可以提供阵列增益,从而提高地面用户的接收信号强度,提升系统性能。另外,仿真结果表明,在考虑簇内包含3个用户的情况下,用户{D_{2,1}}中断性能与文献[17]中簇内远用户的中断性能相接近。由此可以体现出本文工作的优越性。

    图  4  无人机配置不同天线数下用户{D_{2,3}}中断概率随发射功率P的变化情况

    图5为用户 {D_{2,1}} 中断概率随功率分配系数的变化趋势图,可以进一步分析功率分配系数对用户中断性能的影响。仿真中为保证功率分配系数满足{\alpha _{2,1}} \gt {\alpha _{2,2}} \gt {\alpha _{2,3}},设定{\alpha _{2,3}} = 0.1,则{\alpha _{2,1}}取值范围为0.51~0.89, {\alpha _{2,2}} = 0.9 - {\alpha _{2,1}}。从图中可以看出,随着{\alpha _{2,1}}的增加,用户{D_{2,1}}的中断概率减小。由此说明,提高用户功率分配系数,可以改善用户的中断性能。这是因为随着{\alpha _{2,1}}的增加而增大了式(21)表示的用户{D_{2,1}}的SINR,从而使其中断概率减小。

    图  5  用户{D_{2,1}}中断概率随功率分配系数的变化情况

    针对无人机辅助的卫星通信系统下行链路,分析了基于SDMA和协作NOMA相结合的多用户传输系统的中断性能。首先,配置多根天线的无人机作为中继站辅助卫星通信,采用NOMA技术服务多个地面用户,得到地面用户的输出SINR表达式。然后,基于用户平均SINR最大化准则,提出了利用信道角度信息的波束成形方案。接着,进一步推导得到系统的中断概率闭合表达式和高信噪比下系统的中断概率近似表达式。最后,计算机仿真验证了本文所提方案的优越性以及理论分析的正确性,并且定量分析了相关参数对用户性能的影响,为进一步探索NOMA技术在无人机辅助卫星通信系统中的应用提供了有益的参考。

  • [1]
    LIN Min, LIN Zhi, ZHU Weiping, et al. Joint beamforming for secure communication in cognitive satellite terrestrial networks[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(5): 1017–1029. doi: 10.1109/JSAC.2018.2832819
    [2]
    LIN Zhi, LIN Min, DE COLA T, et al. Supporting IoT with rate-splitting multiple access in satellite and aerial-integrated networks[J]. IEEE Internet of Things Journal, 2021, 8(14): 11123–11134. doi: 10.1109/JIOT.2021.3051603
    [3]
    席博, 洪涛, 张更新. 卫星物联网场景下基于节点选择的协作波束成形技术研究[J]. 电子与信息学报, 2020, 42(12): 2882–2890. doi: 10.11999/JEIT190707

    XI Bo, HONG Tao, and ZHANG Gengxin. Research on the collaborative beamforming technique based on the node selection for satellite internet of things[J]. Journal of Electronics &Information Technology, 2020, 42(12): 2882–2890. doi: 10.11999/JEIT190707
    [4]
    徐常志, 靳一, 李立, 等. 面向6G的星地融合无线传输技术[J]. 电子与信息学报, 2021, 43(1): 28–36. doi: 10.11999/JEIT200363

    XU Changzhi, JIN Yi, LI Li, et al. Wireless transmission technology of satellite-terrestrial integration for 6G mobile communication[J]. Journal of Electronics &Information Technology, 2021, 43(1): 28–36. doi: 10.11999/JEIT200363
    [5]
    BHATNAGAR M R and ARTI M K. Performance analysis of hybrid satellite-terrestrial FSO cooperative system[J]. IEEE Photonics Technology Letters, 2013, 25(22): 2197–2200. doi: 10.1109/LPT.2013.2282836
    [6]
    袁祖霞, 林敏, 刘笑宇, 等. 基于多用户反馈的星地协作传输系统性能分析[J]. 系统工程与电子技术, 2021, 43(4): 1089–1098. doi: 10.12305/j.issn.1001-506x.2021.04.27

    YUAN Zuxia, LIN Min, LIU Xiaoyu, et al. Performance analysis of a hybrid satellite-terrestrial cooperative networks with multiuser feedback[J]. Systems Engineering and Electronics, 2021, 43(4): 1089–1098. doi: 10.12305/j.issn.1001-506x.2021.04.27
    [7]
    HUANG Qingquan, LIN Min, ZHU Weiping, et al. Uplink massive access in mixed RF/FSO satellite-aerial-terrestrial networks[J]. IEEE Transactions on Communications, 2021, 69(4): 2413–2426. doi: 10.1109/TCOMM.2021.3049364
    [8]
    贾向东, 路艺, 纪澎善, 等. 大规模无人机协助的多层异构网络设计及性能研究[J]. 电子与信息学报, 2021, 43(9): 2632–2639. doi: 10.11999/JEIT200443

    JIA Xiangdong, LU Yi, JI Pengshan, et al. Design of large-scale UAV-assisted multi-tier heterogeneous networks and performance research[J]. Journal of Electronics &Information Technology, 2021, 43(9): 2632–2639. doi: 10.11999/JEIT200443
    [9]
    KONG Huaicong, LIN Min, ZHU Weiping, et al. Multiuser scheduling for asymmetric FSO/RF links in satellite-UAV-terrestrial networks[J]. IEEE Wireless Communications Letters, 2020, 9(8): 1235–1239. doi: 10.1109/LWC.2020.2986750
    [10]
    LIU Xiaoyu, LIN Min, HUANG Qingquan, et al. Performance analysis for multi-user integrated satellite and UAV cooperative networks[J]. Physical Communication, 2019, 36: 100762. doi: 10.1016/j.phycom.2019.100762
    [11]
    SHARMA P K, DEEPTHI D, and KIM D I. Outage probability of 3-D mobile UAV relaying for hybrid satellite-terrestrial networks[J]. IEEE Communications Letters, 2020, 24(2): 418–422. doi: 10.1109/LCOMM.2019.2956526
    [12]
    LIN Zhi, LIN Min, WANG Junbo, et al. Joint beamforming and power allocation for satellite-terrestrial integrated networks with non-orthogonal multiple access[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(3): 657–670. doi: 10.1109/JSTSP.2019.2899731
    [13]
    HAN Lve, ZHU Weiping, and LIN Min. Outage of NOMA-based hybrid satellite-terrestrial multi-antenna DF relay networks[J]. IEEE Wireless Communications Letters, 2021, 10(5): 1083–1087. doi: 10.1109/LWC.2021.3058005
    [14]
    ZHANG Xiaokai, GUO Daoxing, AN Kang, et al. Performance analysis of NOMA-based cooperative spectrum sharing in hybrid satellite-terrestrial networks[J]. IEEE Access, 2019, 7: 172321–172329. doi: 10.1109/ACCESS.2019.2956185
    [15]
    LI Xingwang, LI Jingjing, LIU Yuanwei, et al. Residual transceiver hardware impairments on cooperative NOMA networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(1): 680–695. doi: 10.1109/TWC.2019.2947670
    [16]
    BADRUDEEN A A, LEOW C Y, and WON S H. Performance analysis of hybrid beamforming precoders for multiuser millimeter wave NOMA systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(8): 8739–8752. doi: 10.1109/TVT.2020.3000443
    [17]
    WANG Changqing, YANG Xiangyu, DU Quancheng, et al. Outage performance of satellite-UAV network framework based on NOMA[C]. The 2021 IEEE 5th International Conference on Cryptography, Security and Privacy, Zhuhai, China, 2021: 171–175.
    [18]
    ALAVI F, CUMANAN K, FOZOONI M, et al. Robust energy-efficient design for MISO non-orthogonal multiple access systems[J]. IEEE Transactions on Communications, 2019, 67(11): 7937–7949. doi: 10.1109/TCOMM.2019.2931972
    [19]
    HUANG Qingquan, LIN Min, WANG Junbo, et al. Outage performance of satellite-aerial-terrestrial network[C]. 2019 IEEE Globecom Workshops, Waikoloa, USA, 2019: 1–6.
    [20]
    WANG Zhengdao and GIANNAKIS G B. A simple and general parameterization quantifying performance in fading channels[J]. IEEE Transactions on Communications, 2003, 51(8): 1389–1398. doi: 10.1109/TCOMM.2003.815053
    [21]
    GRADSHTEYN I S and RYZHIK I M. Table of Integrals, Series, and Products[M]. 7th ed. Burlington: Academic, 2007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (1176) PDF downloads(132) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return