Citation: | Li ZHANG, Di GAO, Shuo CHEN, Xudong LU, Zhanxi PANG, Chuangtao CHEN, Xunzhao YIN, Cheng ZHUO. An Energy Efficient Floating Point Computing Infrastructure Embedding Ferroelectric Field Effect Transistor Based Ternary Content Addressable Memories[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1518-1524. doi: 10.11999/JEIT200979 |
[1] |
WONG H S P and SALAHUDDIN S. Memory leads the way to better computing[J]. Nature Nanotech, 2015, 10(3): 191–194. doi: 10.1038/nnano.2015.29
|
[2] |
KARAM R, PURI R, GHOSH S, et al. Emerging trends in design and applications of memory-based computing and content-addressable memories[J]. Proceedings of the IEEE, 2015, 103(8): 1311–1330. doi: 10.1109/JPROC.2015.2434888
|
[3] |
LI Jing, MONTOYE R K, ISHII M, et al. 1 Mb 0.41 µm2 2T-2R cell nonvolatile TCAM with two-bit encoding and clocked self-referenced sensing[J]. IEEE Journal of Solid-State Circuits, 2014, 49(4): 896–907. doi: 10.1109/JSSC.2013.2292055
|
[4] |
GHOFRANI A, RAHIMI A, LASTRAS-MONTAÑO M A, et al. Associative memristive memory for approximate computing in GPUs[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2016, 6(2): 222–234. doi: 10.1109/JETCAS.2016.2538618
|
[5] |
IMANI M, RAHIMI A, and ROSING T S. Resistive configurable associative memory for approximate computing[C]. 2016 Design, Automation & Test in Europe Conference & Exhibition, Dresden, Germany, 2016: 1327–1332.
|
[6] |
YIN Xunzhao, NIEMIER M, and HU X S. Design and benchmarking of ferroelectric FET based TCAM[C]. Design, Automation & Test in Europe Conference & Exhibition, Lausanne, Switzerland, 2017: 1444–1449.
|
[7] |
NI Kai, YIN Xunzhao, LAGUNA A F, et al. Ferroelectric ternary content-addressable memory for one-shot learning[J]. Nature Electronics, 2019, 2(11): 521–529. doi: 10.1038/s41928-019-0321-3
|
[8] |
YIN Xunzhao, LI Chao, HUANG Qingrong, et al. FeCAM: A universal compact digital and analog content addressable memory using ferroelectric[J]. IEEE Transactions on Electron Devices, 2020, 67(7): 2785–2792. doi: 10.1109/TED.2020.2994896
|
[9] |
REIS D, NI Kai, CHAKRABORTY W, et al. Design and analysis of an ultra-dense, low-leakage, and fast FeFET-based random access memory array[J]. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2019, 5(2): 103–112. doi: 10.1109/JXCDC.2019.2930284
|
[10] |
PAGIAMTZIS K and SHEIKHOLESLAMI A. Content-addressable memory (CAM) circuits and architectures: A tutorial and survey[J]. IEEE Journal of Solid-State Circuits, 2006, 41(3): 712–727. doi: 10.1109/JSSC.2005.864128
|
[11] |
NI Kai, JERRY M, SMITH J A, et al. A circuit compatible accurate compact model for ferroelectric-FETs[C]. 2018 IEEE Symposium on VLSI Technology, Honolulu, USA, 2018: 131–132.
|
[12] |
SONG T K. Landau-Khalatnikov simulations for ferroelectric switching in ferroelectric random access memory application[J]. Journal of the Korean Physical Society, 2005, 46(1): 5–9.
|
[13] |
JASON P, HESTNESS J, ORR M S, et al. gem5-gpu: A Heterogeneous CPU-GPU Simulator[J]. IEEE Computer Architecture Letters, 2015, 14(1): 34–36. doi: 10.1109/LCA.2014.2299539
|
[14] |
FloPoCo[EB/OL]. http://flopoco.gforge.inria.fr.
|
[15] |
Caltech 101[EB/OL]. http://www.vision.caltech.edu/Image_Datasets/Caltech101.
|