Advanced Search
Volume 28 Issue 12
Aug.  2010
Turn off MathJax
Article Contents
Xuejie BI, Juan HUI, Anbang ZHAO, Biao WANG, Lin MA, Xiaoman LI. Underwater Target Depth Classification Method Based on Vertical Acoustic Intensity Flux[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3237-3246. doi: 10.11999/JEIT201045
Citation: Wang Bao-cang, Hu Yu-pu. Knapsack-Type Public-Key Cryptosystem with High Density[J]. Journal of Electronics & Information Technology, 2006, 28(12): 2390-2393.

Knapsack-Type Public-Key Cryptosystem with High Density

  • Received Date: 2005-04-18
  • Rev Recd Date: 2005-09-19
  • Publish Date: 2006-12-19
  • This article proposes a new easy knapsack problem, based on which a novel knapsack-type public key cryptosystem is derived. The cryptosystem obtains a high knapsack density, and hence it is secure against low density subset-sum attack. Some other attacks on the scheme are also analyzed.
  • Merkle R C, Hellman M E. Hiding information and signatures in trapdoor knapsacks[J]. IEEE Trans. on Info. Theory, 1978, IT-24(5): 525-530.[2]Coster M J, Joux A, LaMacchia B A, et al.. Improved low-density subset sum algorithms[J].Computational Complexity.1992, 2(2):111-128[3]Lagarias J C. Knapsack public key cryptosystems and Diophantine approximation[C]. Advances in Cryptology.[J].Proceedings of CRYPTO 83, New York, Plenum.1984,:-[4]Chor B, Rivest R L. A knapsack type public key cryptosystem based on arithmetic in finite fields[J].IEEE Trans. on Info. Theory.1988, 34(5):901-909[5]Vaudenay S. Cryptanalysis of the Chor-Rivest cryptosystem[J].Journal of Cryptology.2001, 14(2):87-100[6]Shamir A, Zippel R E. On the security of the Merkle-Hellman cryptographic scheme[J]. IEEE Trans. on Info. Theory, 1980, IT-26(3): 339-40.[7]Laih C S, Gau M J. Cryptanalysis of a Diophantine equation oriented public key cryptosystem[J].IEEE Trans. on Commun.1997, 46(4):511-512[8]Rivest R L, Shamir A, Adleman L M. A method for obtaining digital signature and public key cryptosystems[J].Communications of the ACM.1978, 21(2):120-126[9]ElGamal T. A public key cryptosystem and a signature scheme based on discrete logarithms[J]. IEEE Trans. on Info. Theory, 1985, IT-31(3): 469-472.[10]Lenstra A K, Lenstra H W, Lovsz L. Factoring polynomials with rational coefficients[J]. Mathematische Annualen, 1982, 261(3): 513-534.[11]Schnorr C. A hierarchy of polynomial time lattice basis reduction algorithm[J].Theoretical Computer Science.1987, 53(2,3):201-224
  • Cited by

    Periodical cited type(6)

    1. 姜文涛,李宛宣,张晟翀. 非线性时间一致性的相关滤波目标跟踪. 计算机应用. 2024(08): 2558-2570 .
    2. 张博. 基于残差神经网络的目标运动边界视觉快速跟踪算法. 探测与控制学报. 2023(03): 37-42+50 .
    3. 姜文涛,孟庆姣. 自适应时空正则化的相关滤波目标跟踪. 智能系统学报. 2023(04): 754-763 .
    4. 姜文涛,徐晓晴. 强化前景感知的相关滤波目标跟踪. 计算机科学与探索. 2023(10): 2462-2477 .
    5. 孟庆姣,姜文涛. 多特征感知的时空自适应相关滤波目标跟踪. 计算机科学. 2023(S2): 203-211 .
    6. 张天晴,刘明华,何博,邵洪波. 基于多注意力融合的抗遮挡目标跟踪. 青岛科技大学学报(自然科学版). 2023(06): 110-118 .

    Other cited types(3)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2361) PDF downloads(1051) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return