Merkle R C, Hellman M E. Hiding information and signatures in trapdoor knapsacks[J]. IEEE Trans. on Info. Theory, 1978, IT-24(5): 525-530.[2]Coster M J, Joux A, LaMacchia B A, et al.. Improved low-density subset sum algorithms[J].Computational Complexity.1992, 2(2):111-128[3]Lagarias J C. Knapsack public key cryptosystems and Diophantine approximation[C]. Advances in Cryptology.[J].Proceedings of CRYPTO 83, New York, Plenum.1984,:-[4]Chor B, Rivest R L. A knapsack type public key cryptosystem based on arithmetic in finite fields[J].IEEE Trans. on Info. Theory.1988, 34(5):901-909[5]Vaudenay S. Cryptanalysis of the Chor-Rivest cryptosystem[J].Journal of Cryptology.2001, 14(2):87-100[6]Shamir A, Zippel R E. On the security of the Merkle-Hellman cryptographic scheme[J]. IEEE Trans. on Info. Theory, 1980, IT-26(3): 339-40.[7]Laih C S, Gau M J. Cryptanalysis of a Diophantine equation oriented public key cryptosystem[J].IEEE Trans. on Commun.1997, 46(4):511-512[8]Rivest R L, Shamir A, Adleman L M. A method for obtaining digital signature and public key cryptosystems[J].Communications of the ACM.1978, 21(2):120-126[9]ElGamal T. A public key cryptosystem and a signature scheme based on discrete logarithms[J]. IEEE Trans. on Info. Theory, 1985, IT-31(3): 469-472.[10]Lenstra A K, Lenstra H W, Lovsz L. Factoring polynomials with rational coefficients[J]. Mathematische Annualen, 1982, 261(3): 513-534.[11]Schnorr C. A hierarchy of polynomial time lattice basis reduction algorithm[J].Theoretical Computer Science.1987, 53(2,3):201-224
|