Advanced Search
Volume 28 Issue 12
Aug.  2010
Turn off MathJax
Article Contents
Wang Bao-cang, Hu Yu-pu. Knapsack-Type Public-Key Cryptosystem with High Density[J]. Journal of Electronics & Information Technology, 2006, 28(12): 2390-2393.
Citation: Wang Bao-cang, Hu Yu-pu. Knapsack-Type Public-Key Cryptosystem with High Density[J]. Journal of Electronics & Information Technology, 2006, 28(12): 2390-2393.

Knapsack-Type Public-Key Cryptosystem with High Density

  • Received Date: 2005-04-18
  • Rev Recd Date: 2005-09-19
  • Publish Date: 2006-12-19
  • This article proposes a new easy knapsack problem, based on which a novel knapsack-type public key cryptosystem is derived. The cryptosystem obtains a high knapsack density, and hence it is secure against low density subset-sum attack. Some other attacks on the scheme are also analyzed.
  • loading
  • Merkle R C, Hellman M E. Hiding information and signatures in trapdoor knapsacks[J]. IEEE Trans. on Info. Theory, 1978, IT-24(5): 525-530.[2]Coster M J, Joux A, LaMacchia B A, et al.. Improved low-density subset sum algorithms[J].Computational Complexity.1992, 2(2):111-128[3]Lagarias J C. Knapsack public key cryptosystems and Diophantine approximation[C]. Advances in Cryptology.[J].Proceedings of CRYPTO 83, New York, Plenum.1984,:-[4]Chor B, Rivest R L. A knapsack type public key cryptosystem based on arithmetic in finite fields[J].IEEE Trans. on Info. Theory.1988, 34(5):901-909[5]Vaudenay S. Cryptanalysis of the Chor-Rivest cryptosystem[J].Journal of Cryptology.2001, 14(2):87-100[6]Shamir A, Zippel R E. On the security of the Merkle-Hellman cryptographic scheme[J]. IEEE Trans. on Info. Theory, 1980, IT-26(3): 339-40.[7]Laih C S, Gau M J. Cryptanalysis of a Diophantine equation oriented public key cryptosystem[J].IEEE Trans. on Commun.1997, 46(4):511-512[8]Rivest R L, Shamir A, Adleman L M. A method for obtaining digital signature and public key cryptosystems[J].Communications of the ACM.1978, 21(2):120-126[9]ElGamal T. A public key cryptosystem and a signature scheme based on discrete logarithms[J]. IEEE Trans. on Info. Theory, 1985, IT-31(3): 469-472.[10]Lenstra A K, Lenstra H W, Lovsz L. Factoring polynomials with rational coefficients[J]. Mathematische Annualen, 1982, 261(3): 513-534.[11]Schnorr C. A hierarchy of polynomial time lattice basis reduction algorithm[J].Theoretical Computer Science.1987, 53(2,3):201-224
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2347) PDF downloads(1050) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return