Y.an Xiao-hong, Liu Gui-zhong, Liu Feng. Integral Multiwavelet Representation of 1/f Signal[J]. Journal of Electronics & Information Technology, 2004, 26(10): 1638-1644.
Citation:
Y.an Xiao-hong, Liu Gui-zhong, Liu Feng. Integral Multiwavelet Representation of 1/f Signal[J]. Journal of Electronics & Information Technology, 2004, 26(10): 1638-1644.
Y.an Xiao-hong, Liu Gui-zhong, Liu Feng. Integral Multiwavelet Representation of 1/f Signal[J]. Journal of Electronics & Information Technology, 2004, 26(10): 1638-1644.
Citation:
Y.an Xiao-hong, Liu Gui-zhong, Liu Feng. Integral Multiwavelet Representation of 1/f Signal[J]. Journal of Electronics & Information Technology, 2004, 26(10): 1638-1644.
Based on the theory of integral multiwavelet transformation, the representation of 1/f signal (not near-1/f signal) is explored by inverse integral multiwavelet transforma-tion, and the conditions of representing 1/f signal are acquired. The statistical characteris-tics of integral multiwavelets transformation are studied, and it is proved that the self-similar characteristics of 1/f signal can be represented by the autocorrelation matrix of coefficients of integral multiwavelet in multiwavelet domain. The representation of 1/f signal by singular wavelet is only the special case of the representation.
Wornell G. W. Signal Processing with Fractals: A Wavelet-Based Approach. New York: Prentice Hall PTR, 1996: 43-54.[2]刘峰,刘贵忠,张茁生.基于小波变换的1/f信号表示.中国科学,2000,30(6):568-573.[3]Chui C K, Lian J. A study of orthonormal multi-wavelets[J].Appl. Numer. Math.1996, 20(3):273-298[4]Lebrun J. High-order banlanced multiwavelets: Theory, factorization, and design. IEEE Trans.on Signal Processing, 2001, SP-49(9): 1918-1930.[5]Flandrin P. Wavelet analysis and synthesis of fractional Browian motion. IEEE Trans. on Information Theory, 1992, IT-38(2): 910-917.[6]Tewfik A H, Kim M. Correlation structure of the discrete wavelet coefficients of fractional Brownian motion. IEEE Trans. on Information Theory, 1992, IT-38(2): 904-909.[7]Barton R J, Poor V H. Signal detection in fractional Gaussian noise. IEEE Trans. on Information Theory, IT-1988, 34(5): 943-959.