Advanced Search
Volume 23 Issue 7
Jul.  2001
Turn off MathJax
Article Contents
Wang Bingzhong. UTD FORMULA FOR AN IMPEDANCE WEDGE (TM CASE)[J]. Journal of Electronics & Information Technology, 1990, 12(1): 32-37.
Citation: Zhao Chengji, Pang Chaoyang, Zhu Weile . A MODIFIED ALGORITHM FOR LOW-POWER IMAGE CODING AND DECODING[J]. Journal of Electronics & Information Technology, 2001, 23(7): 663-668.

A MODIFIED ALGORITHM FOR LOW-POWER IMAGE CODING AND DECODING

  • Received Date: 1998-11-16
  • Rev Recd Date: 1999-06-17
  • Publish Date: 2001-07-19
  • In this paper, a modified scheme for small memories and low-power image and video coding is presented. It is based on vector quantization. In 1998, K. Masselos uses a small codebook, and by using simple but efficient transformations to the codewords during coding procesa the small codebook is extended, thus compensated for the quality degradation intro- duced by the small codebook size. In this way, the power consumption is reduced. Compared to the scheme proposed by K. Masselos, we store the quantized DCT coefficients of codewords in the codebook instead of the codewords itself, and the distortion calculation is performed in the DCT field respectively. Because we use only a part of coefficients to calculate the distances, the distortion calculation is simplified. Furthermore, we modified the way of designing the small (odebook; the possible redundancy in K. Masseloss codebook is eliminated.
  • K. Masselos, P. Merakos, T. Stouraitis, C. E. Goutis, A novel algorithm for low-power image and video coding, IEEE Trans. Circuits and system for video technology, 1998, CSVT-8(3), 258-263.[2]Y. Linde, A. Buzo, R. M. Gray, An algoxithm for vector quantizer design, IEEE Trans. Commun., 1980, COM-28(1), 84-95.
  • Cited by

    Periodical cited type(15)

    1. 卢佳,保文星. 基于独立空谱残差融合的联合稀疏表示高光谱图像分类. 计算机工程. 2019(01): 246-252 .
    2. 袁博. 基于混合像元空间与谱间相关性模型的NMF线性盲解混. 测绘学报. 2019(09): 1151-1160 .
    3. 袁博. 空间与谱间相关性分析的NMF高光谱解混. 遥感学报. 2018(02): 265-276 .
    4. 商宏涛,施国良. 基于SSAE深度学习特征表示的高光谱遥感图像分类方法. 计算机测量与控制. 2018(10): 291-294 .
    5. 陈善学,桂成名,王一宁. 基于块近邻的边界约束标签平滑高光谱图像分类方案. 计算机工程. 2017(11): 245-251 .
    6. 袁博. 马尔可夫随机场的空间相关模型在非负矩阵分解线性解混中的应用. 计算机应用. 2017(12): 3563-3568 .
    7. 朱勇,吴波. 光谱与空间维双重稀疏表达的高光谱影像分类. 地球信息科学学报. 2016(02): 263-271 .
    8. 许宁,尤红建,耿修瑞,曹银贵. 基于光谱相似度量的高光谱图像多任务联合稀疏光谱解混方法. 电子与信息学报. 2016(11): 2701-2708 . 本站查看
    9. 吕俊伟,樊利恒,石晓航. 基于形态学空间特征的高光谱遥感图像分类方法. 光学技术. 2016(05): 385-391 .
    10. 唐晓晴,刘亚洲,陈骏龙. 基于稀疏表示的遥感图像分类方法改进. 计算机工程. 2016(03): 254-258+265 .
    11. 杜培军,夏俊士,薛朝辉,谭琨,苏红军,鲍蕊. 高光谱遥感影像分类研究进展. 遥感学报. 2016(02): 236-256 .
    12. 朱勇,吴波. 多相似测度稀疏表示的高光谱影像分类. 遥感信息. 2016(04): 9-15 .
    13. 李正周,侯倩,戴真,付红霞,葛丰增,金钢. 基于空时稀疏表示的红外小目标检测算法. 兵工学报. 2015(07): 1273-1279 .
    14. 王启聪,吴泽彬,刘建军,韦志辉,叶舜,柳家福. 基于GPU的空谱联合核稀疏表示高光谱分类并行优化. 计算机工程与科学. 2014(12): 2321-2330 .
    15. 袁宗泽,孙浩,计科峰,邹焕新. 基于Fisher字典学习稀疏表示的高光谱图像分类. 遥感技术与应用. 2014(04): 646-652 .

    Other cited types(29)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2014) PDF downloads(432) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return