Advanced Search
Volume 21 Issue 2
Mar.  1999
Turn off MathJax
Article Contents
Chen Bing, Yang Xiao-Ling. A WLAN Access Point Localization Algorithm Based on Probability Density[J]. Journal of Electronics & Information Technology, 2015, 37(4): 855-862. doi: 10.11999/JEIT140661
Citation: Li Shouli, Li Jinyan, Li Wangchao. SPARSED CONNECTION WEIGHTS OF HIGHER-ORDER NEURAL NETWORK AND ITS PRUNING ALGORITHM[J]. Journal of Electronics & Information Technology, 1999, 21(2): 182-185.

SPARSED CONNECTION WEIGHTS OF HIGHER-ORDER NEURAL NETWORK AND ITS PRUNING ALGORITHM

  • Received Date: 1997-08-25
  • Rev Recd Date: 1998-07-26
  • Publish Date: 1999-03-19
  • In this paper, the fully-connected higher-order neuron and sparsed higher-order neuron are introduced, the mapping capabilities of the fully-connected higher-order neural networks are investigated, and that arbitrary Boolean function defined from {0,1}N can be realized by fully-connected higher-order neural networks is proved. Based on this, in order to simplify the networks architecture, a pruning algorithm for eliminating the redundant connection weights is also proposed, which can be applied to the implementation of sparsed higher-order neural classifier. The simulated results show the effectiveness of the algorithm.
  • Paretto P, Niez J J. Long term memory storage capacity of multiconnected neural networks, Biol[J].Cybern.1986, 54(3):53-63[2]Baldi P. Neural networks, orientations of the supercube and algebraic threshold functions, IEEE Trans. on Inform. Theory, 1988, IT-34 (3): 523-530.[3]Giles C L, Maxwell T. Learning, invariance, and generalization in high-order neural networks, Applied Optics, 1987, 26(23): 4972-4978.[4]Giles C L, Chen D, Miller C B, et al. Second-order recurrent neural networks for grammatical[5]inference, Proc. Int. Joint Conf. Neural Networks, IJCNN91, Seattle: vo1.2, 1991, 273-281.Lion R, Azimi-Sadjadi M R, Dent R. Detection of dim targets in high cluttered background using high order correlation neural network, Proc. Int. Conf. Neural Networks, IJCNN91, Seattle: vol.1, 1991, 701-706.[6]Shun-ichi Amari. Dualistic geometry of the manifold of higher-order neurons, Neural Networks, 1991, 4(5): 443-451.[7]李金艳.稀疏高阶神经网络的通近能力及其算法的研究:[博士论文].华南理工大学,1996.[8]李金艳,余英林.二层高阶神经网络对任意布尔函数的实现,华南理工大学学报,1995, 23(10): 111-116.[9]Fahner G, Eckmiller R. Structural adaption of parsimonious higher-order neural classifiers, Neural Networks, 1994, 7(2): 279-289.
  • Cited by

    Periodical cited type(11)

    1. 李新春,纪小璐,魏武,王藜谚,谷永延,曹大焱. 基于OCAE-SOM的室内指纹定位算法研究. 激光与光电子学进展. 2021(08): 304-314 .
    2. 周静,杨新章. 无线定位技术浅析. 广东通信技术. 2021(09): 21-30 .
    3. 李新春,房梽斅,张春华. 基于KPCA和改进GBRT的室内定位算法. 传感技术学报. 2019(03): 430-437 .
    4. 汪家荣,钮焱. 基于移动距离的最佳接入点配置研究. 软件导刊. 2019(04): 168-173 .
    5. 刘影,钱志鸿,贾迪. 室内环境中基于天牛须寻优的普适定位方法. 电子与信息学报. 2019(07): 1565-1571 . 本站查看
    6. 周明快,黄巍,陈滨,毛科技. 基于无线信道状态相位信息优化的定位算法. 传感技术学报. 2018(06): 957-962 .
    7. 肖玮,涂亚庆,徐华. 基于运动参数预测的群组移动节点定位算法. 计算机应用研究. 2018(04): 1221-1226 .
    8. 田增山,王向勇,周牧,李玲霞. 基于DBSCAN子空间匹配的蜂窝网室内指纹定位算法. 电子与信息学报. 2017(05): 1157-1163 . 本站查看
    9. 周牧,唐云霞,田增山,卫亚聪. 基于流形插值数据库构建的WLAN室内定位算法. 电子与信息学报. 2017(08): 1826-1834 . 本站查看
    10. 付思源,王华东. 和声搜索算法优化神经网络的无线网络室内定位. 南京理工大学学报. 2017(04): 428-433 .
    11. 刘文远,吕倩,王林,杨绸绸. 基于动态地标的在线室内平面图生成方法. 电子与信息学报. 2016(06): 1519-1527 . 本站查看

    Other cited types(5)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (604) PDF downloads(855) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return