L.I. Rudin, S. Osher, Feature-oriented image enhancement using shock filters, SIAM J. Num.Anal., 1990, 27, 919-940.[2]L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms.[J]. Phvsica D.1992,60:259-[3]T.F. Chan, H. M. Zhou, R. H. Chan, Continuation method for total variation denoising problems,In SPIE 1995, vol.2563, Advanced Signal Processing Algorithms, F. T. Luk, Ed., San Diego, CA.1995, [4]Y. Li, F. Santosa, A computational algorithm for minimizing total variation in image restoration,IEEE Trans. on Image Processing, 1996, 5(6), 987-995.[4]C.R. Vogel, M. E. Oman, Iterative methods for total variation denoising, SIAM J. Sci. Comput.,1996, 17(1), 227-238.[5]C.R. Vogel, M. E. Oman, Fast, robust total variation-based reconstruction of noisy, blurred images, IEEE Trans. on Image Processing, 1998, 7(6), 813 824.[6]R.E. Ewing, J. Shen, A multigrid algorithm for the cell-centered finite difference scheme, in Proc.6th Copper Mountain Conf. Multigid Methods. NASA Conf. Pub. 3224, April, 1993. [8]T.F. Chan, Chiu-Kwong, Total variation blind deconvolution, IEEE Trans. on Image Processing,1998, 17(3), 370-375.[7]Zou Mou-yan, R. Unbenhauen, On the computational model of a kind of deconvolution problems,IEEE Trans. on Image Processing, 1995, 4(10), 1464-1467.[8]E.H. Golub, C. F. Van Loan, Matrix Computations, Baltimore, MD: Johns Hopkins Univ. Press,1989. [11]C. Charalambous, F. K. Ghaddar, K. Kouris, Two iterative image restoration algorithms with application to nuclear medicine, IEEE Trans. on Medical Imaging, 1992, 11(1), 2-8.[9]Zou Mou-yan, Zou Xi, Global optimization: An auxiliary cost function approach, IEEE Trans.on Systems, Man, and Cybernetics, Part A, 2000, 30(3), 347-354.
|