Han Minghua, Yuan Naichang. A IMPROVED TRACKING KALMAN FILTER USING MULTILAYER NEURAL NETWORK[J]. Journal of Electronics & Information Technology, 1998, 20(6): 739-744.
Citation:
Han Minghua, Yuan Naichang. A IMPROVED TRACKING KALMAN FILTER USING MULTILAYER NEURAL NETWORK[J]. Journal of Electronics & Information Technology, 1998, 20(6): 739-744.
Han Minghua, Yuan Naichang. A IMPROVED TRACKING KALMAN FILTER USING MULTILAYER NEURAL NETWORK[J]. Journal of Electronics & Information Technology, 1998, 20(6): 739-744.
Citation:
Han Minghua, Yuan Naichang. A IMPROVED TRACKING KALMAN FILTER USING MULTILAYER NEURAL NETWORK[J]. Journal of Electronics & Information Technology, 1998, 20(6): 739-744.
This paper presents a method to improve the estimation accuracy of a tracking Kalman filter (TKF)by using a multilayer neural network(MNN). The estimation accuracy of the TKF is degraded due to the uncertainties that cannot be expressed by the linear state-space model proposed in the literature. This fault is overcome due to the use of MNN. The results of the TKF can be modified by the treated MNN. Simulation results show that the estimation accuracy is much improved by using the MNN.
Singer R A. Estimating optimal tracking filter performance for manned maneuvering targets IEEE Trans[J].on Aerosp. Electron. Syst.1970, AES-6(4):473-483[2]Singer R A, Behnke K W. Real-time tracking filter evolution and selection for tracking application[3]IEEE Trans. On Aerosp. Electron. Syst., 1970, AES-7(1): 100-110[4]Rumelhart D E, Hilton G E, Williams R J. Learning Internal Representation by Error Propagation. In Parallel Distributed Processing, 1986, Chapter 8, 319-362.[5]Cloutier J R, Evers J H, Feeley J J. Assessment of air-to-air missile guidance and control technology[J].IEEE Cont. Syst. Mag.1989, 9(6):27-34[6]Funahashi K. On the approximate realization of continuous mapping by neural networks. Neural Networks 1989, 2(3): 184-192.