Advanced Search
Volume 28 Issue 4
Aug.  2010
Turn off MathJax
Article Contents
Peng Jun, Liao Xiao-Feng, Okamoto Eiji, Zhang Wei, Li Xue-Ming. A Block Encryption Algorithm Combined with the Discrete Chaotic Map and Feistel Network[J]. Journal of Electronics & Information Technology, 2006, 28(4): 707-711.
Citation: Peng Jun, Liao Xiao-Feng, Okamoto Eiji, Zhang Wei, Li Xue-Ming. A Block Encryption Algorithm Combined with the Discrete Chaotic Map and Feistel Network[J]. Journal of Electronics & Information Technology, 2006, 28(4): 707-711.

A Block Encryption Algorithm Combined with the Discrete Chaotic Map and Feistel Network

  • Received Date: 2004-08-23
  • Rev Recd Date: 2005-01-04
  • Publish Date: 2006-04-19
  • In this paper a novel block encryption algorithm, which is called CFCEA, is proposed by combining the one dimensional discrete chaotic map and Feistel network. The algorithm operates on 64bit plaintext blocks, and the master key is 128 bit long, and an auxiliary key with size of 128 bit is exploited. Within the round function, the logistic chaotic map and three algebraic group operations are mixed. Moreover, the subkeys schedule is specially designed for the consideration of the security. The cryptographic properties of the algorithm are analyzed, and the results indicate that this algorithm satisfies the strict avalanche criterion and as a result, the diffusion and confusion properties of the algorithm are very ideal. Furthermore, when the block length is 64bit, the approximately upper bound of differential probability and linear probability of CFCEA is 2-52.92 and 2-49.206, respectively. This shows that the algorithm can resist differential and linear cryptanalysis with some strength.
  • loading
  • Pecora L M, Carroll T L. Synchronization in chaotic systems[J].Phys. Rev. Lett.1990, 64(8):821-824[2]Pecora L M, Carroll T L. Driving systems with chaotic signals[J].Phys. Rev. A.1991, 44(4):2374-2383[3]Matthews R. On the derivation of a chaotic encryption algorithm.Cryptologia, 1989, XIII (1): 29-42.[4]Yang T, Wu C W, Chua L O. Cryptography based on chaotic systems[J].IEEE Trans. on CAS-I.1997, 44(5):469-472[5]Sivaprakasam S, Shore K A. Message encoding and decoding using chaotic external-cavity diode lasers[J].IEEE Journal of Quantum Electronics.2000, 36(1):35-39[6]Habutsu T, Nishio Y, Sasase I, et al.. A secret cryptosystem by iterating a chaotic map[J].Advance in cryptology - EUROCRYPT91, Berlin, Springer-Verlag.1991, LNCS 547:127-140[7]Erdmann D, Murphy S. Henon stream cipher[J].Electronics Letters.1992, 28(9):893-895[8]Chen H C, Yen J C. A new cryptography system and its VLSI realization[J].Journal of Systems Architecture.2003, 49(7-9):355-367[9]Kocarev L, Jakimoski G. Logistic map as a block encryption algorithm[J].Phys. Lett. A.2001, 289 (4-5):199-206[10]Jakimoski G, Kocarev L. Chaos and cryptography: block encryption ciphers based on chaotic maps[J].IEEE Trans. on CAS-I.2001, 48(2):163-169[11]Pareek N K, Patidar V, Sud K K. Discrete chaotic cryptography using external key. Phys. Lett. A. 2003, 309 (1-2): 75-82.[12]Fridrich J. Symmetric ciphers based on two-dimensional chaotic maps[J].Int. J. Bifurcation and Chaos.1998, 8(6):1259-1284[13]Salleh M, Ibrahim S, Isnin I F. Enhanced chaotic image encryption algorithm based on Baker's map. ISCAS03, Bangkok Thailand, May 2003, Vol.2: 25-28.[14]Chen G R, Mao Y B and Chui C K. A symmetric image encryption scheme based on 3D chaotic cat maps[J].Chaos, Solitons Fractals.2004, 21(3):749-761[15]Feigenbaum M J. Quantitative universality for a class of nonlinear transformations[J].Journal of Statistical Physics.1978,19(1):25-52[16]Lai X, Massey J L. A proposal for a new block encryptionstandard. Advances in Cryptology - EUROCRYPT90, Berlin Springer-Verlag, 1991, LNCS 473, 389-404.[17]Merkle R C. Fast software encryption functions[J].Advances in Cryptology - CRYPT090, Springer-Verlag, Berlin.1991, LNCS 537:476-501[18]GOST R 34.11-94, Gosudarstvennyi Standard of Russian Federation. Information technology, cryptographic data security, hashing function. Government Committee of the Russia for Standards, 1994.[19]Shannon C E. Communication theory of secrecy system. The Bell System Technical Journal, 1949, 28(4): 656-715.[20]Kocarev L. Chaos-based cryptography: A brief overview. IEEE Trans. on CAS-I, 2001, 1(3): 6-21.[21]Feistel H. Cryptography and computer privacy. Scientific American, 1973, 228(5): 15-23.[22]Biham E, Shamir A. Differential cryptanalysis of DES-like cryptosystems[J].Advances in Cryptology - CRYPTO90, Berlin Springer-Verlag.1991, LNCS 537:2-21[23]Biham E, Shamir A. Differential cryptanalysis of the data encryption standard. Berlin Springer-Verlag, 1993.[24]Matsui M. Linear cryptanalysis method for DES cipher[J].Advances in Cryptology-EUROCRYPT93, Berlin Springer- Verlag.1994, LNCS 765:386-397[25]Nyberg K, Knudsen L. Provable security against a differential attack. Journal of Cryptology, 1995, 8(1): 27-37.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2655) PDF downloads(1020) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return