Advanced Search
Volume 28 Issue 8
Sep.  2010
Turn off MathJax
Article Contents
Wang Zi-lei, Xi Hong-sheng, Zhao Yu, Sheng Yan-min. A Fast Online SVM Algorithm for Multi-user Detection[J]. Journal of Electronics & Information Technology, 2006, 28(8): 1386-1390.
Citation: Wang Zi-lei, Xi Hong-sheng, Zhao Yu, Sheng Yan-min. A Fast Online SVM Algorithm for Multi-user Detection[J]. Journal of Electronics & Information Technology, 2006, 28(8): 1386-1390.

A Fast Online SVM Algorithm for Multi-user Detection

  • Received Date: 2004-11-22
  • Rev Recd Date: 2005-11-23
  • Publish Date: 2006-08-19
  • The runtime of conventional SVM-MUD is too long to satisfy the requirement of real-time application. A fast algorithm based on online training of SVM (FOSVC) for multiuser detection is proposed in the paper. The algorithm distinguishes new added samples and constructs the current training data set using KKT condition in order to reduce the size of training samples. As a result, the training speed is effectively increased. Simulation results illustrate that the algorithm has a faster training speed and a smaller number of support vectors preserving the same quality of separating hyperplane. The performance of the FOSVC detectors is pretty much the same thing as that of SVM detectors, and much better than that of MMSE detectors.
  • loading
  • Verdu S. Multiuser Detection[M]. London: Cambridge UniversityPress, 1998: 154-387.[2]张贤达, 保铮. 通讯信号处理[M]. 北京:国防工业出版社,2000: 420-482.[3]Madhow U, Honing M. MMSE interference suppression fordirect-sequence spread spectrum CDMA[J]. IEEE Trans. onCommunications, 1998, 46(8): 3178-3188.[4]Host-Madsen A, Kyung-Sean Cho. MMSE/PIC multiuserdetection for DS/CDMA systems with inter-and intra-cellinterference[J].IEEE Trans. on Communications.1999, 47(2):291-299[5]Kechriotis G, Manolakos E S. Hopfield neural network implementtationin the optimal CDMA multiuser detector[J]. IEEETrans. on Neural Networks, 1996, NN-7(1): 131-141.[6]Vapnik V. Statistical Learning Theory[M]. New York: Wiley-Interscience Publication, 1998: 401-491.[7]Nello C, John S T. An Introduction to Support VectorMachines[M]. London: Cambridge University Press, 2000:93-122.[8]Gong X H, Kuh A. Support vector machine for multiuserdetection in CDMA communications[A]. Conference Record ofthe Thirty-Third Asilomar Conference on Signals, Systems, andComputers [C]. Vol.1, 24-27 Oct., 1999: 680-684.[9]周伟达, 张莉, 焦李成. 自适应支撑矢量机多用户检测[J]. 电子学报, 2002, 31(1): 92-97.[10]刘枫, 张太镒, 孙建成. 基于修改核函数的RLS-SVM 多用户检测算法[J].电子与信息学报.2003, 25(8):1130-1134浏览[11]杨恒, 张贤达. Rayleigh 信道下的支持向量机多用户检测方法[J].电子与信息学报.2002, 24(2):257-260浏览[12]Lau K W, Wu Q H. Online training of support vector classifier[J].Patten Recognition.2003, 36(8):1913-1920[13]Osuna E, Freund R, Girosi F. An improved training algorithm forsupport vector machines[A]. Neural Network for SignalProcessing[1997] Ⅶ. Proceedings of the 1997 IEEE Workshop.USA , 24-26 Sept., 1997 [C]: 276-285.[14]Platt J. Fast training of support vector machines using sequentialminimal optimization[A]. In: Sch.lkopf B., Burges C.J.C., andSmola A.J. (Eds.) Advances in Kernel Methods-Support VectorLearning, Cambridge, MA, MIT Press. 1999: 185-208.[15]Chang C C, Hsu C W, Lin C J. The analysis of decompositionmethods for support vector machines[J]. IEEE Trans. on NeuralNetworks, 2000, 11(4): 1003-1008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2526) PDF downloads(1072) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return