Advanced Search
Volume 27 Issue 8
Aug.  2005
Turn off MathJax
Article Contents
Zhao Xiao-qun, Huo Xiao-lei, Liu Ying-na . A New Constructional Method of Complementary Sequence Pairs[J]. Journal of Electronics & Information Technology, 2005, 27(8): 1335-1337.
Citation: Zhao Xiao-qun, Huo Xiao-lei, Liu Ying-na . A New Constructional Method of Complementary Sequence Pairs[J]. Journal of Electronics & Information Technology, 2005, 27(8): 1335-1337.

A New Constructional Method of Complementary Sequence Pairs

  • Received Date: 2004-03-26
  • Rev Recd Date: 2004-08-27
  • Publish Date: 2005-08-19
  • In this paper, the construction of complementary sequence pairs are studied, and a new constructional method is found, with which it can get a complementary sequence pairs of length MN by a complementary sequence pairs of length M and a complementary sequence pairs of length N. This is an expansion of the former constructional method which can only get complementary sequence pairs of even length and is usefull to study the property of odd length complementary sequence pairs.
  • loading
  • 杨义先,林须端.编码密码学[M].北京:人民邮电出版社,1992:5-30.[2]杨义先.最佳信号理论与设计[M].北京:人民邮电出版社,1996:107-129.[3]Golay M J E. Complementary series[J].IEEE Trans. on Info.Theroy.1961,7(2):82-[4]Jauregui S. Complementary sequences of length 26[J]. IEEE Trans. on Info. Theory, 1962, 8(4): 323 - 329.[5]Luke H D. Binary odd-periodic complementary sequences[J].IEEE Trans. on Info. Theory.1997, 43(1):365-[6]赵晓群,何文才,王仲文,贾世楼.最佳二进阵列偶理论研究[J].电子学报,1999,27(1):34-37.[7]何文才,赵晓群,贾世楼,王仲文.最佳二进阵列偶的复合构造方法[J].电子学报,1999,27(4):51-54.[8]赵晓群,贾世楼,王仲文.序列偶及其应用[J].遥测遥控,1998,19(3):31-35.[9]赵晓群.阵列偶和加权二元序列偶理论的研究[D].哈尔滨:哈尔滨工业大学,1998.[10]赵晓群,张成.二元互补序列偶性质的研究及其新的表征方法[J].通信学报,2003,24(11A):1-7.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2281) PDF downloads(732) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return