Zhao Xiao-qun, Huo Xiao-lei, Liu Ying-na . A New Constructional Method of Complementary Sequence Pairs[J]. Journal of Electronics & Information Technology, 2005, 27(8): 1335-1337.
Citation:
Zhao Xiao-qun, Huo Xiao-lei, Liu Ying-na . A New Constructional Method of Complementary Sequence Pairs[J]. Journal of Electronics & Information Technology, 2005, 27(8): 1335-1337.
Zhao Xiao-qun, Huo Xiao-lei, Liu Ying-na . A New Constructional Method of Complementary Sequence Pairs[J]. Journal of Electronics & Information Technology, 2005, 27(8): 1335-1337.
Citation:
Zhao Xiao-qun, Huo Xiao-lei, Liu Ying-na . A New Constructional Method of Complementary Sequence Pairs[J]. Journal of Electronics & Information Technology, 2005, 27(8): 1335-1337.
In this paper, the construction of complementary sequence pairs are studied, and a new constructional method is found, with which it can get a complementary sequence pairs of length MN by a complementary sequence pairs of length M and a complementary sequence pairs of length N. This is an expansion of the former constructional method which can only get complementary sequence pairs of even length and is usefull to study the property of odd length complementary sequence pairs.
杨义先,林须端.编码密码学[M].北京:人民邮电出版社,1992:5-30.[2]杨义先.最佳信号理论与设计[M].北京:人民邮电出版社,1996:107-129.[3]Golay M J E. Complementary series[J].IEEE Trans. on Info.Theroy.1961,7(2):82-[4]Jauregui S. Complementary sequences of length 26[J]. IEEE Trans. on Info. Theory, 1962, 8(4): 323 - 329.[5]Luke H D. Binary odd-periodic complementary sequences[J].IEEE Trans. on Info. Theory.1997, 43(1):365-[6]赵晓群,何文才,王仲文,贾世楼.最佳二进阵列偶理论研究[J].电子学报,1999,27(1):34-37.[7]何文才,赵晓群,贾世楼,王仲文.最佳二进阵列偶的复合构造方法[J].电子学报,1999,27(4):51-54.[8]赵晓群,贾世楼,王仲文.序列偶及其应用[J].遥测遥控,1998,19(3):31-35.[9]赵晓群.阵列偶和加权二元序列偶理论的研究[D].哈尔滨:哈尔滨工业大学,1998.[10]赵晓群,张成.二元互补序列偶性质的研究及其新的表征方法[J].通信学报,2003,24(11A):1-7.