Khebir A. Higher order asymptotic boundary condition for thefinite element modeling of two-dimensional transmission linestructures[J].IEEE Trans. on Microwave Theory and Techniques.1990, 38(10):1433-1438[2]Gordon R K. A finite difference approach that employs anasymptotic boundary condition on a rectangular outer boundaryfor modeling two-dimensional transmission line structures[J].IEEE Trans. on Microwave Theory and Techniques.1993, 41(8):1280-1286[3]Mei K K. Measured equation of invariance: a new concept infield computations[J].IEEE Trans. on Antennas and Propagation.1994, 42(3):320-328[4]Liu Yaowu, Lan Kang, Mei K K. Capacitance extraction forelectrostatic multiconductor problems by on-surface MEI[J].IEEE Trans. on Advanced Packaging.2000, 23(3):489-494[5]Yu Wenjian, Wang Zeyi. A fast quasi-multiple medium methodfor 3-D BEM calculation of parasitic capacitance[J].Computers Mathematics with Applications.2003, 45(12):1883-1894[6]郝跃, 荆明娥, 马佩军. VLSI 集成电路参数成品率及优化研究进展[J]. 电子学报, 2003, 31(12A): 1971-1974.[7]Mikazuki T, Matsui N. Statistical design techniques forhigh-speed circuit boards with correlated structure distributions[J].IEEE Trans. on Components Packaging and ManufacturingTechnology.1994, 17(1):159-165[8]Oh S Y, Jung W Y, Kong J T, Lee K H. Interconnect modeling forVLSIs. Proc. Of SISPAD, Kyoto Japan, September 1999:203-206.[9]Lee Joo-Hee, Lee Keun-Ho, Park Jin-Kyu, Lee Jong . Bae, ParkYoung-Kwan, Kong Jeong-Taek, Jung Won-Young, Oh Soo-Young. An indirect extraction of interconnect technologyparameters for efficient statistical interconnect modeling and itsapplications. Statistical Metrology, 2000 5th InternationalWorkshop on, Honolulu, HI, USA, 11 June 2000: 38-41.[10]Liu Ying, Pileggi Lawrence T, Strojwas Andrzej J. Modelorder . reduction of RC(L) interconnect including variationalanalysis. Design Automation Conf. New Orleans, LA. 21 . 25June 1999: 201-206.[11]Wang J M, Ghanta P, Vrudhula S. Stochastic analysis ofinterconnect performance in the presence of process variations.IEEE/ACM International Conference on Computer Aided Design2004, San Jose, CA USA. 2004: 880-886.[12]殷显安. 实验模拟的蒙特卡洛方法[J]. 测试技术学报, 1994,8(2): 49-51.[13]徐勤卫, 李征帆, 陈文. 一种用于模拟高速互连线瞬态响应的高效数值方法[J]. 电子学报, 1999, 27(11): 114-116.[14]李鸿儒, 李征帆. 一种用于模拟高速VLSI中互连线瞬态响应的高效数值方法[J]. 上海交通大学学报, 2001, 35(6): 817-819,825.[15]齐磊, 卢铁兵, 崔翔. 端接非线性负载的非均匀传输线瞬态分析[J]. 电波科学学报, 2003, 18(2): 153-156.[16]唐旻, 马西奎. 一种用于分析高速VLSI中频变互连线瞬态响应的精细积分算法[J]. 电子学报,2004, 32(5): 788-790.[17]赵进全, 马西奎, 邱关源. 有损传输线时域响应分析的精细积分法[J]. 微电子学, 1997, 27(3): 180-185.[18]钟万勰. 暂态历程的精细计算方法[J]. 计算结构力学及其应用, 1995, 12(1): 1-6.
|