Advanced Search
Volume 27 Issue 11
Nov.  2005
Turn off MathJax
Article Contents
Yi Xiang, Wang Wei-ran. Method of Image Denoising Based on Statistical Mixture Model in Wavelet Domain[J]. Journal of Electronics & Information Technology, 2005, 27(11): 1722-1725.
Citation: Yi Xiang, Wang Wei-ran. Method of Image Denoising Based on Statistical Mixture Model in Wavelet Domain[J]. Journal of Electronics & Information Technology, 2005, 27(11): 1722-1725.

Method of Image Denoising Based on Statistical Mixture Model in Wavelet Domain

  • Received Date: 2004-04-28
  • Rev Recd Date: 2004-12-30
  • Publish Date: 2005-11-19
  • In this paper, a novel image denoising method based on statistical mixture model in wavelet domain is proposed. Firstly, the wavelet coefficients are classified as significant and insignificant coefficients by using interscale statistical model. Secondly, Maximum A Posteriori (MAP) estimator based on intrascale statistical model is used to restore the noisy wavelet image coefficients. A completive algorithm is presented to implement this idea. Experimental results and analysis are given to demonstrate the validity and effectiveness of the proposed method.
  • loading
  • Chang S, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression[J].IEEE Trans. on Image Processing.2000, 9(9):1532-1546[2]Crouse M S, Nowak R D. Wavelet-based signal processing using hidden Markov models[J].IEEE Trans. on Signal Processing.1998, 46(4):886-902[3]Lewis A S, Knowles G. Image compressing using the 2-d wavelet transform. IEEE Trans. on Image Processing, 1992, 1(2): 224-250.[4]Liu J, Moulin P. Information-theoretic analysis of interscale and intrascale dependencies between image wavelet coefficients[J].IEEE Trans. on Image Processing.2001, 10(11):1647-1658[5]Simoncelli E P, Adelson E H. Noise removal via Bayesian wavelet coring. In Proc. IEEE Int. Conf. on Image Processing, Lausanne, Switzerland, 1996, 1: 379-382.[6]Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage[J].Biometrika.1994, 81(3):425-455[7]Donoho D L, Johnstone I M. Adapting to unknown smoothness[8]via wavelet shrinkage. Journal of American Statistical Assoc., 1995, 90(432): 1200-1224.[9]Rombery J K.[J].Choi H, Baraniuk R G. Hidden Markov tree modeling of complex wavelet transforms. In Proc. IEEE ICASSP 00, Istanbul, Turkey.2000,:-[10]Kingsbury N G. The dual-tree complex wavelet transform: a new efficient tool for image restoration and enhancement. In Proc. EUSIPCO 98, Island of Rhodes, Greek, 1998: 319-322.[11]Kingsbury N G. A dual-tree complex wavelet transform with improved orthogonality and symmetry properties. In Proc. IEEE Int. Conf. on Image Processing, Vancouver, Canada, 2000, 2: 375-378.[12]Sendur I, Selesnick I W. Bivariate shrinkage function for wavelet-based denoising exploiting interscale dependency[J].IEEE Trans. on Signal Processing.2002, 50(11):2744-2756
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2434) PDF downloads(673) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return