Advanced Search
Volume 19 Issue 6
Nov.  1997
Turn off MathJax
Article Contents
Wang Changhong, Gao Xiaozhi, Xu Lixin, Zhuang Xianyi, Gao Xiaoming. A NEW MODIFIED ELMAN NEURAL NETWORK MODEL[J]. Journal of Electronics & Information Technology, 1997, 19(6): 739-744.
Citation: Wang Changhong, Gao Xiaozhi, Xu Lixin, Zhuang Xianyi, Gao Xiaoming. A NEW MODIFIED ELMAN NEURAL NETWORK MODEL[J]. Journal of Electronics & Information Technology, 1997, 19(6): 739-744.

A NEW MODIFIED ELMAN NEURAL NETWORK MODEL

  • Received Date: 1995-12-11
  • Rev Recd Date: 1997-03-06
  • Publish Date: 1997-11-19
  • This paper first discusses the structure, principle and learning algorithm of Elman neural network model. A modified Ehnan neural network model is then proposed by adding new adjustable weights between the context nodes and the output nodes to enhance its dynamical character. The corresponding learning algorithm is also derived by using steepest descent principle. Theoretical analysis and simulation results show that this kind of modified Ehnan neural network learns much faster than the original model.
  • loading
  • Hunt K J, Sbarbaro D, Zbikowski R, et al.Neural networks for control system-A survey[J].Automatica.1992, 28(6):1083-1112[2]Narendra K S, Parthasarathy K. Identification and control of dynamical systems using neural networks[J].IEEE Trans. on Neural Networks.1990, 1(1):4-27[3]高晓智,王常虹,徐立新,等.CMAC神经网络再励学习控制.CIAC95中国智能自动化学术会议里智能自动化专业委员会成立大会论文集,天津:1995,638-643.[4]Elman J. Finding structure in time[J].Cognitive Science.1990, 14(2):179-211[5]Sastry P S, Santharam G, Unnikrishnan K P. Memory neuron networks for identification and control of dynamical systems[J].IEEE Trans. on Neural Networks.1994, 5(2):306-319
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3003) PDF downloads(476) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return