Advanced Search
Volume 25 Issue 3
Mar.  2003
Turn off MathJax
Article Contents
Zhang Lifei, Wang Dongfeng, Shi Yonggang, Zou Mouyan. A survey of image segmentation techniques using deformable models[J]. Journal of Electronics & Information Technology, 2003, 25(3): 395-403.
Citation: Zhang Lifei, Wang Dongfeng, Shi Yonggang, Zou Mouyan. A survey of image segmentation techniques using deformable models[J]. Journal of Electronics & Information Technology, 2003, 25(3): 395-403.

A survey of image segmentation techniques using deformable models

  • Received Date: 2001-10-22
  • Rev Recd Date: 2002-02-28
  • Publish Date: 2003-03-19
  • Abstract Image segmentation using deformable models encompasses a class of techniques developed in recent years and has been studied extensively. The techniques offer a novel method for effectively extracting the border of an irregular object in images. This paper introduces briefly the fundamental principle and history of image segmentation techniques. A few typical deformable models are reviewed including a discussion for their advantages and disadvantages. Finally, the limitation and the further possibilities of current segmentation techniques using deformable model are analyzed.
  • loading
  • [1] M. Kass, A. Witkin, D. Terzopoulos, Snakes.[J].active contour models, Intl J. Comp. Vis.1987,1(4):321-331 [2] A.A. Amini, T. E. Weymouth, R. C. Jain, Using dynamic programming for solving variational problems in vision, IEEE Trans. on Patt. Anal. Mach. Intell., 1990, 12(9), 855-867. [3] L.D. Cohen, On active contour models and balloons, CVGIP: Imag. Under., 1991, 53(2), 211-218. [4] T. McInerney, D. Terzopoulos, A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis, Comp.Med. Image Graph., 1995, 19(1), 69-83. [5] V. Caselles, F. Catte, T. Coll, F. Dibos, A geometric model for active contours.[J]. Numerische Mathematik.1993,66:1- [6] R. Malladi, J. A. Sethian, B. C. Vemuri, Shape modeling with front propagation: a level set approach, IEEE Trans. on Patt. Anal. Mach. Intell., 1995, 17(2), 158-175. [7] V. Caselles.[J].R. Kimmel, G. Sapiro, Geodesic active contours, in Proc. 5th Intl Conf. Comp.Vis., Cambridge, MA.1995,:- [8] R.T. Whitaker, Volumetric deformable models: active blobs, Tech. Rep. ECRC-94-25, European Computer-Industry Research Center GmbH, 1994. [9] G. Sapiro, A. Tannenbaum, Afline invariant scale-space, Intl J. Comp. Vis., 1993, 11(1), 25-44. [10] L.D. Cohen, On active contour models and balloons, CVGIP: Imag. Under., 1991, 53(2), 211-218. [11] D. Terzopoulos, A. Witkin, M. Kass, Constraints on deformable models: recovering 3D shape and nonrigid motion, Artificial Intelligence, 1988, 36(1), 91-123. [12] L.D. Cohen, I. Cohen, Finite-element methods for active contour models and balloons for 2-D and 3-D images, IEEE Trans. on Patt. Anal. Mach. Intell., 1993, 15(11), 1131-1147. [13] C. Xu, J. L. Prince, Generalized gradient vector flow external forces for active contours, Signal Processing-An International Journal, 1998, 71(2), 131-139. [14] C. Xu, J. L. Prince, Snakes, shapes, and gradient vector flow, IEEE Trans. on Imag. Proc., 1998,7(3), 359-369. [15] R. Durikovic, K. Kaneda, H. Yamashita, Dynamic contour: a texture approach and contour operations, The Visual Computer, 1995, 11(6), 277-289. [16] T. McInerney.[J].D. Terzopoulos, Topologically adaptable snakes, in Proc. 5th Intl Conf. Comp.Vis., Cambridge, MA.1995,:- [17] B.B. Kimia, A. R. Tannenbaum, S. W. Zucker, Shapes, shocks, and deformations I.[J].the components of two-dimensional shape and the reaction-diffusion space, Intl J. Comp. Vis.1995,15(3):189-224 [18] R. Kimmel, A. Amir, A. M. Bruckstein, Finding shortest paths on surfaces using level sets propagation, IEEE Trans. on Patt. Anal. Mach. Intell., 1995, 17(6), 635-640. [19] L. Alvarez, F. Guichard, P. L. Lions, J. M. Morel, Axioms and fundamental equations of image processing, Archive for Rational Mechanics and Analysis, 1993, 123(3), 199-257. [20] S. Osher, J. A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Computational Physics, 1988, 79(1), 12-49. [21] J. A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Material Science, Cambridge, UK:Cambridge University Press, 2nd ed., 1999, 6-12. [22] J.A. Sethian, Curvature and evolution of fronts, Commun. Math. Phys., 1985, 101(4), 487-499. [23] J. A. Sethian, A review of recent numerical algorithms for hypersurfaces moving with curvature dependent speed, J. Differential Geometry, 1989, 31, 131-161. [24] V. Caselles, R. Kimmel, G. Sapiro, Geodesic active contours, Intl J. Comp. Vis., 1997, 22(1),61-79. [25] A. Yezzi, S. Kichenassamy, A. Kumar, P. Olver, A. Tennenbaum, A geometric snake model for segmentation of medical imagery, IEEE Trans. on Med. Imag., 1997, 16(2), 199-209. [26] S. Kichenassamy, A. Kumar, P. Olver, A. Tennenbaum, A. Yezzi, Conformal curvature flows:from phase transitions to active vision, Arch. Rational Mech. Anal., 1996, 134, 275-301. [27] K. Siddiqi, Y. B. Lauzi ere, A. Tannenbaum, W. Zucker, Area and length minimizing flows for shape segmentation, IEEE Trans. on Imag. Proc., 1998, 7(3), 433-443. [28] L.H. Staib, J. S. Duncan, Boundary finding with parametrically deformable models, IEEE Trans.on Patt. Anal. Mach. Intell., 1992, 14(11), 1061-1075. [29] C. Nastar, N. Ayache, Frequency-based nonrigid motion analysis: application to four dimensional medical images, IEEE Trans. on Patt. Anal. Mach. Intell., 1996, 18(11), 1067-1079. [30] A. Pentland, B. Horowitz, Recovery of nonrigid motion and structure, IEEE Trans. on Patt.Anal. Mach. Intell., 1991, 13(7), 730-742. [31] D. Terzopoulos, D. Metaxas, Dynamic 3D models with local and global deformations: deformable superquadrics, IEEE Trans. on Patt. Anal. Mach. Intell., 1991, 13(7), 703-714. [32] T.F. Cootes, A. Hill, C. J. Taylor, J. Haslam, Use of active shape models for locating structures in medical images, Imag. Vis. Computing J., 1994, 12(6), 355-366. [33] T.F. Cootes, C. J. Taylor, D. H. Cooper, J. Graham, Active shape models-their training and application, Comp. Vis. Imag. Under., 1995, 61(1), 38-59. [34] Mario A. T. Figueiredo, Jose M. N., Anil K. Jain, Unsupervised contour representation and estimation using B-splines and a minimum description length criterion, IEEE Trans. on Imag.Proc, 2000, 9(6), 1075-1087. [35] C. Chesnaud, P. Refregier, V. Boulet, Statistical region snake-based segmentation adapted to different physical noise models, IEEE Trans. on Patt. Anal. Mach. Intell., 1999, 21(11), 1145-1157. [36] C. Chesnaud, V. Page, P. Refregier, Improvement in robustness of the statistically independent region snake-based segmentation method of target-shape tracking, Optics Letters, 1998, 23(7),488-490. [37] S. Fenster, J. Kender, Sectored snakes: evaluating learned-energy segmentations, IEEE Trans.on Patt. Anal. Mach. Intell., 2001, 33(9), 1028-1034. [38] N. Paragios, R. Deriche, Geodesic active contours and level sets for the detection and tracking of moving objects, IEEE Trans. on Patt. Anal. Mach. Intell., 2000, 22(3), 266-280. [39] MS. Horritt, DC. Mason, AJ. Luckman, Flood boundary delineation from synthetic aperture radar imagery using a statistical active contour model, Journal of Remote Sensing, 2001, 22(13),2489-2507. [40] A. Tsai, A. Yezzi, and A. Willsky, Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification, IEEE Trans. on Imag.Proc., 2001, 10(8), 1169-1184. [41] T. Chan, L. Vese, Active contours without edges, IEEE Trans. on Imag. Proc., 2001, 10(2),266-272.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2455) PDF downloads(963) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return