Advanced Search
Volume 15 Issue 3
May  1993
Turn off MathJax
Article Contents
Cui Tiejun, Liang Changhong. REFLECTION FROM A WAVEGUIDE FILLED WITH FRACTAL CANTOR LAYERS[J]. Journal of Electronics & Information Technology, 1993, 15(3): 274-278.
Citation: Cui Tiejun, Liang Changhong. REFLECTION FROM A WAVEGUIDE FILLED WITH FRACTAL CANTOR LAYERS[J]. Journal of Electronics & Information Technology, 1993, 15(3): 274-278.

REFLECTION FROM A WAVEGUIDE FILLED WITH FRACTAL CANTOR LAYERS

  • Received Date: 1991-12-02
  • Rev Recd Date: 1992-05-29
  • Publish Date: 1993-05-19
  • The multi-layered media modeled by the Cantor bar are a type of fractal structures, which have been found wide applications in some optical areas, If they are introduced into microwave fields, a new kind of microwave devices will be developed. In this paper, the reflection properties of wave in a waveguide filled with fractal Cantor layers are investigated. Based on the self-similarity of networks, a new exact self-similar algorithm for reflection and transmission coefficients is derivel. Some examples are ...
  • loading
  • B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, San Francisco, (1982), Cha pter 1.[2][2][3]E. Jakeman, J. Opt. Soc. Am., 72(1982)8, 1034.-1038.[4]C. Bourrely, P. Chiappetta, B. Torresani, J. Opt. Soc. Am, A3(1986)2, 250-255.[5]D. L. Jaggard, Y. Kim, J. Opt. Soc. Am., A4(1987)6, 1055-1061.[6]D. L. laggard, X. Sun, J. Opt. Soc. Am., A7(1990)6, 1131-1135.[7]D. L. Jaggard, X. Sun, IEEE Trans. on AP, AP-37(1989)12, 1591-1594.[8]D. L. Jaggard, X. Sun, Opt. Lett, 15(1990)24, 1428-1430.[9]高安秀树著, 沈步明, 常子文译, 分数维, 地震出版社, 北京, 1989年, 第一章.[10]R. F. Harrington, Time-Harmonic Electromagnetic Field, McGraw-Hill Book Company, INC. New York, (1961), pp. 148-152.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2037) PDF downloads(509) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return