Han Jian-qun, Zhu Yi-sheng . An Improved Method of Extracting the Correlation Dimension from a Chaotic Signal[J]. Journal of Electronics & Information Technology, 2005, 27(6): 905-907.
Citation:
Han Jian-qun, Zhu Yi-sheng . An Improved Method of Extracting the Correlation Dimension from a Chaotic Signal[J]. Journal of Electronics & Information Technology, 2005, 27(6): 905-907.
Han Jian-qun, Zhu Yi-sheng . An Improved Method of Extracting the Correlation Dimension from a Chaotic Signal[J]. Journal of Electronics & Information Technology, 2005, 27(6): 905-907.
Citation:
Han Jian-qun, Zhu Yi-sheng . An Improved Method of Extracting the Correlation Dimension from a Chaotic Signal[J]. Journal of Electronics & Information Technology, 2005, 27(6): 905-907.
The correlation dimension is an important parameter for describing a chaotic signal. The method of extracting the correlation dimension is deeply researched in this paper. Based on the GP method, an improved algorithm of extracting the correlation dimension is given. The algorithm has the character of little calculating amount, higher accuracy and smaller aimless ability of scaling selection.
Grassberger P, Procaccia I. Characterization of stranger attractors [J].Phys. Rev. Lett.1983, 50(5):346-[2]杨绍清,等.一种实用的混沌信号相关维的提取算法.电子学报,2000,28(10):20-22.[3]Kantz H, Schreiber T. Nonlinear Time Series Analysis, England,Cambridge University Press, 1997:69 - 75.[4]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用.武汉:武汉大学出版社,2002:57-71.[5]Takens F. Detecting strange attractors in fluid turbulence[A].in:Dynamical Systems and Turbulence [C].eds. D. A. Rand and L. S.Young, Berlin: Springer, 1981:366 - 381.[6]陈士华,陆君安.混沌动力学初步.武汉:武汉水利电力大学出版社,1998:95-101.[7]Lai Y C, et al.. Effective scaling regime for computing the correlation dimension from chaotic time series [J].Physica D.1998, 115(1-2):1-