Dong Li-hua, Zeng Yong, Hu Yu-pu. A Fast Cryptanalysis of the Generalized Self-shrinking Sequences[J]. Journal of Electronics & Information Technology, 2004, 26(11): 1783-1786.
Citation:
Dong Li-hua, Zeng Yong, Hu Yu-pu. A Fast Cryptanalysis of the Generalized Self-shrinking Sequences[J]. Journal of Electronics & Information Technology, 2004, 26(11): 1783-1786.
Dong Li-hua, Zeng Yong, Hu Yu-pu. A Fast Cryptanalysis of the Generalized Self-shrinking Sequences[J]. Journal of Electronics & Information Technology, 2004, 26(11): 1783-1786.
Citation:
Dong Li-hua, Zeng Yong, Hu Yu-pu. A Fast Cryptanalysis of the Generalized Self-shrinking Sequences[J]. Journal of Electronics & Information Technology, 2004, 26(11): 1783-1786.
An initial reconstruction algorithm is given for the generalized self-shrinking sequences using the ideas of the guessing attack. The result shows that: (1) when both the characteristic polynomial of the Linear Feedback Shift Register (LFSR) and the linear combiner are known, the algorithm ensures the cryptanalysis with complexity O((L/2)32L-2)),lL/2; (2) when the linear combiner is unknown, the algorithm ensures the cryptanalysis with complexity O(L322L-1),lL; (3) When the characteristic polynomial of the LFSR is unknown, the algorithm ensures the cryptanalysis with complexity O((2L-1)L-122L-l),lL. Here L is the length of the LFSR.
Hu Yupu, Xiao Guozhen. Generalized self-shrinking sequences[J].IEEE Trans. on Inform. Theory.2004, 50(4):714-719[2]Golic J Dj, OConnor L. Embedding and probabilistic correlation attacks on clock-controlled shift registers[J].Advances in Cryptology-EUROCPYPT94, Lecture Notes in Computer Science.1995,vol.950:230-243[3]Golic J Dj. Towards fast correlation attacks on irregularly clocked shift registers[J].Advances in Cryptology-EUROCRYPT95, Lecture Notes in Computer Science.1995, vol.921:248-261[4]董丽华,胡予濮.广义自缩序列的安全性研究.西安电子科技大学学报,2003,30(3):81-85.[5]Mihaljevic M J. A faster cryptanalysis of the self-shrinking generator[J].Proc.of ACIPS96, Lecture Notes in Computer Science. Springer-Verlag.1996, vo1.1172:182-189[6]Saxena N R, McCluskey E J. Degree-r primitive polynomial generation- O(ra) ~ O(kr4) algorithms. www-crc.stanford.edu/crc_papers/primitive.pdf, July 29, 2000.