Advanced Search
Volume 14 Issue 5
Sep.  1992
Turn off MathJax
Article Contents
Ke Hengyu, Huang Xiwen. A UTD SOLUTION FOR RADIATION FROM THE SOURCE ON A CONVEX SURFACE BY DGF METHOD[J]. Journal of Electronics & Information Technology, 1992, 14(5): 486-495.
Citation: Ke Hengyu, Huang Xiwen. A UTD SOLUTION FOR RADIATION FROM THE SOURCE ON A CONVEX SURFACE BY DGF METHOD[J]. Journal of Electronics & Information Technology, 1992, 14(5): 486-495.

A UTD SOLUTION FOR RADIATION FROM THE SOURCE ON A CONVEX SURFACE BY DGF METHOD

  • Received Date: 1991-09-17
  • Rev Recd Date: 1992-03-21
  • Publish Date: 1992-09-19
  • A UTD (uniform geometrical theory of diffraction for electromagnetic waves) solution for the field excited by electric and (or) magnetic dipoles on a perfectly conducting cylinder is derived by DGF (dyadic Green s function) technique at first. Then, with the fundamental principle of high-frequency electromagnetic field, the character of geometrical optics and the differential geometry theory, a UTD solution for the radiation field of dipole on a perfectly conducting smooth convex surface is obtained by directly extending the results of the canonical problem. The formulae given in this paper agree primarily with that obtained by P. H. Pathak et al. (1981) except for some factors of dyadic transfer function in lit region. Some factors derived by P. H. Pathak are corrected.
  • loading
  • G. L. James.[J].Geometrical theory of diffraction for electromagnetic wave, London New York, IEE.1980,:-[2]P. H. Pathak, Wang Nan, W. D. Burnside, R.C.Kouyoumjion, IEEE Trans. on AP, AP-29(1981)4, 609-622.[3]柯亨玉,黄锡文,李永俊,武汉大学学报(自然科学版),1990年,第3期,第57-67页.[4]柯亨玉,黄锡文,武汉大学学报(目然科学版),1991年,第2期,第41-51页.[5]吴大任,微分几何讲义,人民教育出版社,北京,1981年.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2356) PDF downloads(509) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return