Xu Dazhuan, Xu Zongze. A NEW ALGORITHM FOR COMPUTING INVERSES IN THE FINITE FIELD GF(2m)[J]. Journal of Electronics & Information Technology, 1998, 20(6): 771-774.
Citation:
Xu Dazhuan, Xu Zongze. A NEW ALGORITHM FOR COMPUTING INVERSES IN THE FINITE FIELD GF(2m)[J]. Journal of Electronics & Information Technology, 1998, 20(6): 771-774.
Xu Dazhuan, Xu Zongze. A NEW ALGORITHM FOR COMPUTING INVERSES IN THE FINITE FIELD GF(2m)[J]. Journal of Electronics & Information Technology, 1998, 20(6): 771-774.
Citation:
Xu Dazhuan, Xu Zongze. A NEW ALGORITHM FOR COMPUTING INVERSES IN THE FINITE FIELD GF(2m)[J]. Journal of Electronics & Information Technology, 1998, 20(6): 771-774.
A new algorithm with the complexity O(logm) is presented to compute inverses in the finite field GF(2m) based on the normal basis representations and the Massey-Omura s multipliers. The inverse in GF(2m) can be computed with [log2(m-1)]+w(m-1)-1 multiplications and m-1 cyclic shifts, where [x] denotes the maximum integer less than or equal to x, w(m-1) the number of 1 in the binary representation of m-1.
Berlekamp E R. Algebraic Coding Theory. New york: McGraw-Hill, 1968.[2]Brickell F F. A fast modular multiplication algorithm with application to two key cryptography, advances in cryptography. Proceedings of Crypto-82, New York: Plenum Press, 1983, 51-60.[3]Wang C C, Truong T K, Shao H M, Deutsch L J, Omura J K, Reed I S. VLSI architectures for computing multiplications and inverses in GF(2m)[J].IEEE Trans. on Computers.1985, C-34(8):709-716[4]徐大专.在GF(2m)上计算指数和逆.计算机学报,1990, 13(11): 860-863.[5]Itoh T, Tsujii S. Effective recursive algorithm for computing multiplicative inverses in GF(2m)[J].Electron. Lett.1988, 24(6):334-335[6]Asano Y, Itoh T, Tsujii S. Generalised fast algorithm for computing multiplicative inverses in GF(2m)[J].Electron. Lett.1989, 25(10):664-665