Advanced Search
Volume 23 Issue 4
Apr.  2001
Turn off MathJax
Article Contents
He Zhenya, Yang Luxi, Liu Ju, Lu Ziyi, He Chen. A CLASS OF APPROACHES FOR BLIND SOURCE SEPARATION BASED ON MULTIVARIATE DENSITY ESTIMATION[J]. Journal of Electronics & Information Technology, 2001, 23(4): 345-353.
Citation: He Zhenya, Yang Luxi, Liu Ju, Lu Ziyi, He Chen. A CLASS OF APPROACHES FOR BLIND SOURCE SEPARATION BASED ON MULTIVARIATE DENSITY ESTIMATION[J]. Journal of Electronics & Information Technology, 2001, 23(4): 345-353.

A CLASS OF APPROACHES FOR BLIND SOURCE SEPARATION BASED ON MULTIVARIATE DENSITY ESTIMATION

  • Received Date: 1999-04-14
  • Rev Recd Date: 1999-10-13
  • Publish Date: 2001-04-19
  • A class of learning algorithms is drived for blind separation of independent source signals in this paper. These algorithms are based on minimizing a contrast function defined in terms of the Kullback-Leibler distance. By utilizing the technique of multivariate density esti-mation, two types of separating algorithms are obtained. Simulations illustrate the effectiveness of the algorithms.
  • loading
  • C. Jutten, J. Herault, Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic structure, Signal Processing, 1991, 24(1), 1-10.[2]P. Comon, Independent component analysis, A new concept? Signal Processing, 1994, 36(3), 287-314.[3]刘琚,鲁子奕,何振亚等,基于信息理论准则的盲源分离方法,应用科学学报,1999,17(2),156-162.[4]H.H. Yang, S. Amari, Adaptive online learning algorithms for blind separation: Maximum entropy and minimum mutual information, Neural Computation, 1997, 9(7), 1457-1482.[5]A.J. Bell, T. J. Sejnowski, An information-maximization approach to blind separation and blind deconvolution, Neural Computation, 1995, 7(6), 1129-1159.[6]D. Obradovic, G. Deco, Information maximization and independent component analysis, is there a difference? Neural Computation, 1998, 10(8), 2085-2101.[7]J.F. Cardoso, B. Laheld, Equivariant adaptive source separation, IEEE Trans. on Signal Processing, 1996, 44(12), 3017-3030.[8]J.N. Hwang, S. R. Lay, A. Lippman, Nonparametric multivariate density estimation, A comparative study. IEEE Trans. on Signal Processing, 1994, 42(10), 2795-2810.[9]J.N. Hwang, S. R. Lay, A. Lippman, Unsupervised learning for multivariate probability density estimation, Radial basis and projection pursuit, IEEE Int. Conf. Neural Networks, 1993, San Francisco, CA, 1486-1491.[10]B.A. Linde, R. M. Gray, An algorithm for vector quantizer design, IEEE Trans. on Commun,1980, 28(1), 84-95.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2267) PDF downloads(375) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return