Advanced Search
Volume 27 Issue 11
Nov.  2005
Turn off MathJax
Article Contents
Wang Xiao-hua, He Yi-gang, Peng Yu-lou. Optimum Design of 2-D Linear-Phase FIR Digital Filters[J]. Journal of Electronics & Information Technology, 2005, 27(11): 1755-1759.
Citation: Wang Xiao-hua, He Yi-gang, Peng Yu-lou. Optimum Design of 2-D Linear-Phase FIR Digital Filters[J]. Journal of Electronics & Information Technology, 2005, 27(11): 1755-1759.

Optimum Design of 2-D Linear-Phase FIR Digital Filters

  • Received Date: 2004-06-01
  • Rev Recd Date: 2004-11-17
  • Publish Date: 2005-11-19
  • This paper provides a new design approach based on a Neural Networks Algorithm(NNA). According to the amplitude-frequency response characteristics of 2-D FIR linear-phase filters ,the NNA is established .Using the NNA,the designed filter coefficients can be obtained from the specified amplitude-frequency responses.To ensure stability of the NNA, the convergence theorem of the NNA is presented and proved. Two examples including circularly-symmetric and quadrately-symmetric 2-D lowpass linear-phase FIR filtsrs are also given to illustrate the effectiveness of the NNA-based design approach,and the results show that the ripple is considerably small in passband and in stopband,and the NNA-based method is of strong stability and requires significantly little amount of computations.Therefore,the optimal design approach is effective and excellent in the design field of 2-D linear phase FIR digital filters.
  • loading
  • Huang T S. Two-dimensional windows[J]. IEEE Trans.on Audio Electroacoust, 1972, 20(3): 80-90.[2]Speake T C, Mersereau R M. Anote on the use of windows for 2-D filter design[J].IEEE Trans. on ASSP.1981, 29(2):125-127[3]Merserau R M, et al.. McClellan transformations for 2-D digital filtering[J]. IEEE Trans.on Circuits Syst. I, 1976, 3(7): 405-413.[4]Nguyen D T, Swamy M N S. Formulas for parameters scaling in the McClellan transform[J].IEEE Trans.on Circuits Syst.1986, 33 (1):108-109[5]Algazi V R, et al.. Design of almost minimax FIR filters in one and two dimensions by WLS techniques[J].IEEE Trans.on Circuits Syst.1986, 33 (6):590-596[6]Hsieh C H, Kuo C M, Jou Y D, et al.. Design of two- dimensional FIR digital filters by a two- dimensional WLS technique[J].IEEE Trans.on Circuits Syst. II.1997, 44 (5):348-412[7]Charalambous C. The performance of an algorithm on minimax design of two- dimensional linear phase FIR filters[J].IEEE Trans. on Circuits Syst.1985, 32(10):1016-1028[8]Lang M, Selesnick I W, Burrus C S. Constrained least squares design of 2-D FIR filters[J].IEEE Trans. on Signal Processing.1996, 44 (5):1234-1241[9]Tseng Chien-Cheng. Design of 1-D and 2-D variable fractional delay allpass filters using weighted least-square method[J].IEEE Trans. on Circuits Syst. I.2002, 49 (10):1413-1422[10]Zhu W P, Ahmad M O, Swamy M N S. A closed form solution to the least square design problem of 2-D linear phase FIR filters[J].[11]IEEE Trans. on Circuits Syst. II, 1997,12 (44): 1032-1039.[12]Lu W S. Aunified approach for the design of 2- D digital filtersvia semidefinite programming[J].IEEE Trans.on Circuits Syst. I.2002, 49 (6):814-825[13]Charalambous C. The performance of an algorithm on minimax design of two- dimensional linear phase FIR filters[J].IEEE Trans. on Circuits Syst.1985, 32 (10):1016-1028
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2502) PDF downloads(810) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return