Yang Hongchun, Ruan Chengli, Pei Jun. The study of beam scanning for linear element flanar antenna array[J]. Journal of Electronics & Information Technology, 2003, 25(3): 427-432.
Citation:
Yang Hongchun, Ruan Chengli, Pei Jun. The study of beam scanning for linear element flanar antenna array[J]. Journal of Electronics & Information Technology, 2003, 25(3): 427-432.
Yang Hongchun, Ruan Chengli, Pei Jun. The study of beam scanning for linear element flanar antenna array[J]. Journal of Electronics & Information Technology, 2003, 25(3): 427-432.
Citation:
Yang Hongchun, Ruan Chengli, Pei Jun. The study of beam scanning for linear element flanar antenna array[J]. Journal of Electronics & Information Technology, 2003, 25(3): 427-432.
Based on electromagnetic theory, the analytical and numerical results of radial energy of linear element planar antenna array excited by electromagnetic pulse are offered at first, then, by analyzing the results with the interference and the diffraction theories, following conclusions are got: (1) The electromagnetic radiation problem of plane linear element planar antenna array can be solved by grating equation concisely. (2) The maximum energy of bounded beam is proportional to the square of the number of element of antenna array. (3) Keeping the same line elements of antenna array feeding at the same time while each row successive postpone properly, the beam can be restrained within the expected area. (4) The effective scanning angle range depends on the given half angle width.
阮成礼,万长华,电磁导弹的波形条件,科学通报,1990,36(10),738-741.[2]谢兴盛,袁心平,张涛,大学物理教程,成都,电子科技大学出版社,1997.11,167-168.[3]J.M. Myers, T. T. Wu, Electromagnetic missiles from currents on fractal sets, Proc.[J]. SPIE.1990,1226:314-[4]R.W. Ziolkowski, Localized transmission of electromagnetic energy, Phys. Rev. A, 1989, 39(4),2005-2033.[5]H.F. Harmuth, Radar equation for nonsinusiodal waves, IEEE Trans. on EMC 1989, 31,138-147.