Advanced Search
Volume 24 Issue 8
Aug.  2002
Turn off MathJax
Article Contents
Shi Guangming, Zhang Zijing, Jiao Licheng. Design of sopot two-channel perfect reconstruction fir filter banks based on evolutionary strategies[J]. Journal of Electronics & Information Technology, 2002, 24(8): 1035-1039.
Citation: Shi Guangming, Zhang Zijing, Jiao Licheng. Design of sopot two-channel perfect reconstruction fir filter banks based on evolutionary strategies[J]. Journal of Electronics & Information Technology, 2002, 24(8): 1035-1039.

Design of sopot two-channel perfect reconstruction fir filter banks based on evolutionary strategies

  • Received Date: 2001-01-02
  • Rev Recd Date: 2001-10-12
  • Publish Date: 2002-08-19
  • This paper proposes a method based on evolutionary strategies (ES) for design ofmultiplier-less two-channel perfect-reconstruction (PR) filter banks (FB). The filter banks are jbased on the modified lifting scheme structure. A new ES given a seed is proposed to find the *sum of power-of-two (SOPOT) coefficient of the filter bank. This method requires much less 玠esign time than genetic algorithm. Finally, a PR FB with SOPOT coefficient is given as an :example to illustrate the proposed method.
  • loading
  • B.R. Horng, et al., The design of low-complexity linear-phase FIR filter banks using powers-of-two coefficients with an application to subband image coding, IEEE Trans. on CAS VT., 1991,l(4), 318-324.[2]A. Gilloire, et al., Adaptive filtering in subbands with critical sampling: analysis, experiments,and application to acoustic echo cancellation, IEEE Trans. on SP., 1992, SP-40(8), 1862-1875.[3]M.R. Azimi-Sadjadi, et al., A new time delay estimation in subbands for resolving multiple specular reflexions, IEEE Trans. on SP., 1998, SP-46(12), 3398-3403.[4]S. Sriranganathan, et al., The design of low complexity two-channel lattice structure perfectreconstruction filter banks using genetic algorithms, IEEE ISCAS97, Hong Kong, 1997, Vol.3,2393-2396.[5]Ju-Hong Lee, et al., Minimax design of 2-D linear-phase FIR filters with continuous and powers-of two coefficients, Signal Processing 2000, 80(8), 1435-1444.[6]P.P. Vaidyanathan, Multirate Systems and Filter Banks, Englewood Cliffs, NJ: Prentice Hall,1993, Chapter 5, 192-203.[7]J.S. Mao, New Design and Factorization Methods for Perfect Reconstruction Filter Banks, Ph.D. Thesis, the University of Hong Kong, Jan, 2000. [8]石光明,焦李成,多项式分解理论与低时延完全重构两通道滤波器组的设计,电子与信息学报,2002,24(7),910-915[8]I. Rechenberg, Evolutionsstrategie: Optimierung technischer Systeme nach PrinzISien der biologischen Evolution, Frommann-Holzboog, Stuttgart, 1973, Chapter 3 and 4.[9]D. B. Fogel, Applying evolutionary programming to selected traveling salesman problems, Cybernetics and Systems, 1993, 24(1), 27-36.[10]G. D. Andrew, M. D. Macleod, Use of minimum-adder multiplier blocks in FIR digital filter,IEEE Trans. on CAS-II, 1995, CAS-II-42(9), 569-577.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2166) PDF downloads(511) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return