Yan Tao, Du Xing-min, Ru Le. Study on Iterative Decoding of Turbo Codes with Extrinsic Information in Different Versions[J]. Journal of Electronics & Information Technology, 2005, 27(10): 1643-1646.
Citation:
Yan Tao, Du Xing-min, Ru Le. Study on Iterative Decoding of Turbo Codes with Extrinsic Information in Different Versions[J]. Journal of Electronics & Information Technology, 2005, 27(10): 1643-1646.
Yan Tao, Du Xing-min, Ru Le. Study on Iterative Decoding of Turbo Codes with Extrinsic Information in Different Versions[J]. Journal of Electronics & Information Technology, 2005, 27(10): 1643-1646.
Citation:
Yan Tao, Du Xing-min, Ru Le. Study on Iterative Decoding of Turbo Codes with Extrinsic Information in Different Versions[J]. Journal of Electronics & Information Technology, 2005, 27(10): 1643-1646.
In this paper,based on various methods of using extrinsic information, two logarithmic iterative decoding algorithms of Turbo codes are anatomized clearly for a discrete memoryless Gaussian channel. With Monte Carlo simulation, performance of two algorithms is compared under the same constraint condition; after analysis it is proposed that they are identical in nature, the only difference is how to deal with scale of extrinsic information for component decoder to use. Finally, a united form is used to describe two algorithms and some research is done for the dependency on extrinsic information in iterative decoding numerically, from the result it is found that SNR and iterative number do not affect the best scale of extrinsic information used in component decoder.
Berrou C, Glavieux A, Thitimajshima P. Near Shannon limit error-correcting coding and decoding: Turbo-codes[C]. IEEE International Conference on Communication, Geneva, Switzerla- nd, May 1993: 1064-1070.[2]Robertson P. Illuminating the structure of code and decoder of parallel concatenated recursive systematic (turbo) codes[C]. Proc. IEEE Global Commun. Conf. (GLOBECOM94), San Franci-sco, CA, 1994: 1298-1303.[3]Colavolpe G, Ferrari G, Raheli R. Extrinsic information in iterative decoding: a unified view[J].IEEE Trans on Communications.2001, 49(12):2088-2094[4]Bahl L R, Cocke J, Jelinek F, Raviv R. Optimal decoding of line-ar codes for minimizing symbol error rate[J]. IEEE Trans. Info. Theory, 1974, 20(2): 284-284.[5]Robertson P, Hoeher P, Villebrum E. Optimal and sub-optimal maximum a posteriori algorithms suitable for turbo decoding[J].European Trans. on Telecomm.1997, 8(2):119-125[6]Benedetto S, Divsalar D, Montorsi G. Pollara F. Soft-output decoding algorithms in iterative decoding of turbo codes[A]. JPL TDA Progress Report, Feb. 15, 1996: 42-127.[7]Hagenauer J, Offer E, Papke L. Iterative decoding of block and convolutional codes[J].IEEE Trans. on Info Theory.1996, 42(2):429-445[8]Berrou C, Glavieux A. Near optimum error correcting coding and decoding: Turbo-codes[J].IEEE Trans. on Communications.1996, 44(10):1261-1271