Advanced Search
Volume 28 Issue 12
Aug.  2010
Turn off MathJax
Article Contents
He Yun-hui, Zhao Li, Zou Cai-rong. Face Recognition Based on Kernel Discriminative Common Vectors[J]. Journal of Electronics & Information Technology, 2006, 28(12): 2296-2300.
Citation: He Yun-hui, Zhao Li, Zou Cai-rong. Face Recognition Based on Kernel Discriminative Common Vectors[J]. Journal of Electronics & Information Technology, 2006, 28(12): 2296-2300.

Face Recognition Based on Kernel Discriminative Common Vectors

  • Received Date: 2005-10-24
  • Rev Recd Date: 2006-04-14
  • Publish Date: 2006-12-19
  • Face recognition tasks always encounter Small Sample Size (SSS) problem, which leads to the ill-posed problem in Fisher Linear Discriminant Analysis (FLDA). The Discriminative Common Vector (DCV) successfully overcomes this problem for FLDA. In this paper, the DCV is extended to nonlinear case, by performing the Gram-Schmidt orthogonalization twice in feature space, which involving computing two kernel matrices and performing a Cholesky decomposition of a kernel matrix. The experimental results demonstrate that the proposed KDCV achieve better performance than the DCV method.
  • loading
  • Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.[2]Yu H, Yang J. A Direct LDA algorithm for high-dimensional data with application to face recognition[J].Pattern Recognition.2001, 34(10):2067-2070[3]Chen L F, Liao H YM, Ko M T, Lin JC, Yu G J. A new LDA-based face recognition system which can solve the small sample size problem[J].Pattern Recognition.2000, 33(10):1713-1726[4]Huang R, Liu Q, Lu H, Ma S. Solving the small size problem of LDA[J].Proc. 16th Intl Conf. Pattern Recognition, Quebec City, Que., Canada.2002, 3(8):29-32[5]Cevikalp H, Neamtu M, Wilkes M, Barkana A. Discriminativecommon vectors for face recognition[J].IEEE Trans. on Pattern Analysis and Machine Intelligence.2005, 27(1):4-13[6]Glmezoglu M B, Dzhafarov V, Barkana A. The common vector approach and its relation to principal component analysis[J].IEEE Trans. Speech and Audio Processing.2001, 9(6):655-662[7]Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Analysis. England: Cambridge Univ. Press, 2004, Part 2.[8]程云鹏. 矩阵论[M]. 西安: 西北工业大学出版社, 2001, 第4章.[9]Foley D H, Sammon J W. An optimal set of discriminant vectors[J].IEEE Trans. on Comput.1975, 24(3):281-289[10]Yang J, Jin Z, Yang JY. Essence of kernel Fisher discriminant: KPCA plus LDA[J].Pattern Recognition.2004, 37(10):2097-2100
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2273) PDF downloads(950) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return