Advanced Search
Volume 20 Issue 3
May  1998
Turn off MathJax
Article Contents
Xu Jinbiao, Wang Yumin. SELECTING IN STOP AND GO DECISION-DIRECTED ALGORITHM AND ITS MOMENTUM ALGORITHM[J]. Journal of Electronics & Information Technology, 1998, 20(3): 321-329.
Citation: Xu Jinbiao, Wang Yumin. SELECTING IN STOP AND GO DECISION-DIRECTED ALGORITHM AND ITS MOMENTUM ALGORITHM[J]. Journal of Electronics & Information Technology, 1998, 20(3): 321-329.

SELECTING IN STOP AND GO DECISION-DIRECTED ALGORITHM AND ITS MOMENTUM ALGORITHM

  • Received Date: 1996-06-11
  • Rev Recd Date: 1997-08-01
  • Publish Date: 1998-05-19
  • Based on analysis of the stop and go decision-directed (DD) algorithm, a method of selecting (3 is proposed, which guarantees the quick convergent characteristic of the stop and go DD algorithm. In order to improve the convergent speed of stop and go DD algorithm, the momentum stop and go DD algorithm is proposed and then based on this, an adaptive momentum stop and go DD algorithm is also proposed. Computer simulations show that the proposed techniques are very effective for the stop and go DD algorithm.
  • loading
  • Sato Y. A method of self-recovering equalization for multilevel amplitude-modulation systems.[2]IEEE Trans. on COM, 1975, 23(6): 679-682.[3]Godard D. Self-recovering equalization and carrier tracking in two dimensional data communication system[J].IEEE Trans. on COM.1980, 28(11):1867-1875[4]Benveniste A, Goursat M, Ruget G. Robust identification of a non-minimum phase system: Blind adjustment of a linear equalizer in data communication. IEEE Trans. on AC, 1980, 25(3): 385-399.[5]Beilini S. Bussgang techniques for blind equalization. in GLOBECOM86, Houston: 1986, 1634-1640.[6]Picchi G, Prati G. Blind equalization and carrier recovering using a stop-and-go decision-directed algorithm[J].IEEE Trans. on COM.1987, 35(9):877-887[7]Shalvi O, Weinstein E. New criteria for blind deconvolution of nonminimum phase systems (channels)[J].IEEE Trans. on IT.1990, 36(2):312-321[8]Jablon N K. Joint blind equalization, carrier recovery, and timing recovery for high-order QAM signal constellations[J].IEEE Trans. on SP.1992, 40(6):1383-1398[9]Hatzinakos D, Nikias C L. Blind equalization on using a tricepstrum based algorithm[J].IEEE Trans. on COM.1991, 39(5):669-682[10]Porat B, Friedlander B. Blind equalization of digital communication channels using high-order moments. IEEE Trans. on ASSP, 1991, 39(2): 522-526.[11]Seshadri N. Joint data and channel estimation using blind trellis search techniques[J].IEEE Trans. on COM.1994, 42(2/3/4):1000-1011[12]Iltis R A, Shynk J J, Giridhar K. Bayesian algorithms for blind equalization using parallel adaptive filtering[J].IEEE Trans. on COM.1994, 42(2/3/4):1017-1031[13]Ross F J, Taylor D P. An enhancement to blind equalization algorithms[J].IEEE Tans. on COM.1991, 39(5):636-639[14]Wesolowski K. Adaptive blind equalizers with automatically controlled parameters[J].IEEE Trans. on COM.1995, 43(2):170-172[15]Yatsuboshi R, et al. A convergence of automatic equalizer by maximum level error control. National Convention Record, IEIC of Japan, 1974(2192).[16]徐金标,王育民.用于MQAM调制的新型的自恢复均衡技术的研究.电子学报,1997, 25(7): 39-44.[17]Roy R, Shynk J J. Analysis of the momentum LMS algorithm[J].IEEE Trans. on ASSP.1990, 38(12):2088-2098
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2300) PDF downloads(418) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return