Advanced Search
Volume 25 Issue 1
Jan.  2003
Turn off MathJax
Article Contents
Liu Ju, Nie Kaibao, He Zhenya. On separability and separating method of nonlinear mixed signals[J]. Journal of Electronics & Information Technology, 2003, 25(1): 54-61.
Citation: Liu Ju, Nie Kaibao, He Zhenya. On separability and separating method of nonlinear mixed signals[J]. Journal of Electronics & Information Technology, 2003, 25(1): 54-61.

On separability and separating method of nonlinear mixed signals

  • Received Date: 2001-07-12
  • Rev Recd Date: 2002-01-07
  • Publish Date: 2003-01-19
  • The separability and separating conditions for mixed signals are analyzed in this paper. The limitation of nonlinear blind source separation methods is proposed. A new nonlinear BSS approach is developed by applying Edgeworth expansion and adaptive cumulant estimation into information back propagation algorithm. Computer simulation shows the validity of the proposed algorithm in some ad hoc model. A comparison with the Gram-Charlier expansion method is given.
  • loading
  • C. Jutten, J. Herault, Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic, Signal Processing, 1991, 24(1), 1-10. [2]A.J. Bell, T. J. Sejnowski, An information-maximization approach to blind separation and blind deconvolution, Neural Computation, 1995, 7(6), 1129-1159. [3]S. Amari, A. Cichocki, H. H. Yang, A new learning algorithm for blind signal separation, Advances in Neural Information Processing Systems, Cambridge, MA: MIT Press, 1996, 8, 657-663. [4]G. Burel, Blind separation of sources: A nonlinear neural algorithm, Neural Networks, 1992, 5(6),937-947. [5]L.C. Parra, Symplectic nonlinear component analysis, Advances in Neural Information Processing Systems, MA: MIT Press, 1996, 8,437-443. [6]P. Pajunen, A. Hyvarinen, J. Karhunen, Nonlinear blind source separation by self-organization maps, in Progress in Neural Information Processing, Berlin, Springer, 1996, 2, 1207-1210. [7]H.H. Yang, S. Amari, A. Cichocki, Information back-propagation for blind separation of sources from non-linear mixture, in Proc. ICNN, Houston, 1997, 2141-2146. [8]A. Taleb, C. Jutten, Source separation in post nonlinear mixtures: An entropy-based algorithm,in Proc. of ICASSP, Seattle, Washington, 1998, 2089-2092. [9]A. Hyvarinen, P. Pajunen, On existence and uniqueness of solutions in non-linear independent component analysis, in Proc. of IJCNN, Anchorage, Alaska, 1998, 1350-1355. [10]C. Goncalo, L. B. Almeida, Separation of nonlinear mixtures using pattern repulsion, in Proc.of the First International Workshop on Independent Component Analysis and Signal Separation,Aussois, France, 1999, 277-282. [11]S.M. Kendall, A. Stuart, The Advanced Theory of Statistics, London, Charles Griffin Company Limited, 1977, Chapt. 6. [12]O. Amblard, J. M. Brossier, Adaptive estimation of the fourth-order cumulant of a white stochastic process, Signal Processing, 1995, 42(1), 37-42.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2396) PDF downloads(1028) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return