Advanced Search
Volume 23 Issue 12
Dec.  2001
Turn off MathJax
Article Contents
Zhao Wei, Pan Quan, Dai Guanzhong, Zhang Hongcai . DEVELOPMENT OF MULTISCALE SYSTEM THEORY[J]. Journal of Electronics & Information Technology, 2001, 23(12): 1427-1433.
Citation: Zhao Wei, Pan Quan, Dai Guanzhong, Zhang Hongcai . DEVELOPMENT OF MULTISCALE SYSTEM THEORY[J]. Journal of Electronics & Information Technology, 2001, 23(12): 1427-1433.

DEVELOPMENT OF MULTISCALE SYSTEM THEORY

  • Received Date: 2000-05-10
  • Rev Recd Date: 2000-10-12
  • Publish Date: 2001-12-19
  • In many problems, it is of interest to analyze and recognize the phenomena occurring at different scales. The recently introduced multiscale framework offers the possibility of such an analysis. In this paper; the development of the multiscale system theory is introduced briefly, and its application in modeling and estimation is presented. The multiscale models, smoothing error models and two kinds of multiscale realizations are described in particular. Some possible research directions are pointed out.
  • loading
  • H. Krim, W. Willinger, A. Juditski, D. Tse. Introduction to the special issue on multiscale statistical signal analysis and its application, IEEE Trans. on Information Theory, 1999, 45(3),825-827.[2]M. Basseville, A. Benveniste, K. Chou, S. Golden, R. Nikoukhah, A. Willsky, Modeling and estimation of multiresolution stochastic process, IEEE Trans. on Information Theory, 1992,38(2), 766-784.[3]K. Chou, A. Willsky, A. Benveniste, Multiscale recursive estimation, data fusion and regularization, IEEE Trans. on Automatic Control, 1994, 39(3), 464-478.[4]A. Benveniste, R. Nikoukhah, A. Willsky, Multiscale system theory, in Proc. 29th IEEE Conference on Decision and Control, Honolulu, Hawaii, Dec. 1990, 2484-2487.[5]M. Basseville, A. Benveniste, A. Willsky, Multiscale autoregressive processes, Part I, Schur-Levinson parametrizations, IEEE Trans. on Signal Processing, 1992, 40(8), 1915-1934.[6]M. Basseville, A. Benveniste, A. Willsky, Multiscale autoregressive processes, Part II, Lattice structure for whitening and modeling, IEEE Trans. on Signal Processing, 1992, 40(8), 1935-1953.[7]K. Chou, A. Willsky. Kalman filtering and Riccati equations for multiscale processes, in Proc.29th IEEE Conference on Decision and Control, Honolulu, Hawaii, Dec. 1990, 841-846.[8]K. Chou, S. A. Golden, A. Willsky, Multiresolution stochastic models, data fusion and wavelet transform, Signal Processing, 1993, 34(3), 257-282.[9]K. Chou, A. Willsky, R. Nikoukhah, Multiscale systems, Kalman filters and Riccati equations,IEEE Trans. on Automatic Control, 1994, 39(3), 479-492.[10]M. Bello, A. Willsky, B. Levy, D. Castanon, Smoothing error dynamics and their use in the solution of smoothing and mapping problems, IEEE Trans. on Information Theory, 1986, 32(4),483-495.[11]M. Bello, A. Willsky, B. Levy, Construction and application of discrete-time smoothing error models, Int. J. Contr., 1989, 50(1), 203-223.[12]M. R. Luettgen, A. Willsky, Multiscale smoothing error models, IEEE Trans. on Automat.Contr., 1995, 40(1), 173-175.[13]M.R. Luettgen, Image processing with multiscale stochastic models. [PhD thesis], Massachusetts Institute of Technology, Cambridge, MA, 1993. [14]M. R. Luettgen, A. Willsky, Likelihood calculation for a class of multiscale stochastic models, with application to texture discrimination, IEEE Trans. on Image Processing, 1995, 4(2), 194-207.[14]P.W. Feiguth, A. Willsky, Fractal estimation using model on multiscale trees, IEEE Trans. on Signal Processing, 1996, 44(5), 1297-1300.[15]P. Fieguth, W. Karl, A. Willsky, C. Wunsch, Multiresolution optimal interpolation and statistical analysis of TOPEX/POSEIDON satellite altimetry, IEEE Trans. on Geoscience and Remote Sensing, 1995, 33(2), 280-292.[16]P. Fieguth, D. Menemenlis, T. Ho, A. Willsky, C. Wunsch, Mapping Mediterranean altimeter data with a multiresolution optimal interpolation algorithm, J. of Atmospheric and Oceanic Technology, 1998, 15(4), 535-546.[17]M.R. Luettgen, W. C. Karl, A. Willsky, Multiscale representation of Markov random fields, IEEE Trans. on Signal Processing, 1993, 41(12), 3377-3395.[18]D. Menemenlis, P. Fieguth, C. Wunsch, A. Willsky, Adaptation of a fast optimal interpolation algorithm to the mapping of oceanographic data, J. of Geophysical Research, 1997, 102(C5),10573-10584.[19]W. Irving, P. Fieguth, A. Willsky, An overlapping tree approach tb multiscale stochastic modeling and estimation, IEEE Trans. on Image Processing, 1997, 6(11), 1517-1729.[20]T. T. Ho. Multiscale modeling and estimation of large-scale dynamic systems. [PhD thesis],Massachusetts Institute of Technology, Cambridge, MA, 1998. [22]M. Daniel, A. Willsky, A multiresolution methodology for signal-level fusion and data assimilation with applications to remote sensing, Proc. IEEE, 1997, 85(1), 164-183.[21]W. Irving, Theory for multiscale stochastic realization and identification. [PhD thesis], Massachusetts Institute of Technology, Cambridge, MA, 1995. [24]H. Akaike, Markovian representation of stochastic processes by canonical variables, SIAM J. of Control, 1975, 13(1), 162-173.[22]M. Luettgen, W. Karl, A. Willsky, Efficient multiscale regulation with application to the computation of optical flow, IEEE Trans. on Image Processing, 1994, 3(1), 41-64.[23]P. Fieguth, W. Karl, A. Willsky, Efficient multiresolution counterparts to variational methods in surface reconstruction, Coy puter Vision and Image Understanding, 1998, 70(2), 157-176.[24]M. Schneider.[J].Multiscale methods for the segmentation of images, [Masters thesis], Massachusetts Institute of Technologv, Cambridge, MA.1996,:-[25]赵巍,多尺度系统建模与估计方法研究,博士论文,西北工业大学,2001年.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2236) PDF downloads(816) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return