Wang Chengyi, Wang Hongyu. ESTIMATION OF CYCLIC SPECTRA USING TWO-CHANNEL COMPLEX MAXIMUM ENTROPY (AUTOREGRESSIVE) SPECTRAL ANALYSIS[J]. Journal of Electronics & Information Technology, 1999, 21(4): 461-466.
Citation:
Wang Chengyi, Wang Hongyu. ESTIMATION OF CYCLIC SPECTRA USING TWO-CHANNEL COMPLEX MAXIMUM ENTROPY (AUTOREGRESSIVE) SPECTRAL ANALYSIS[J]. Journal of Electronics & Information Technology, 1999, 21(4): 461-466.
Wang Chengyi, Wang Hongyu. ESTIMATION OF CYCLIC SPECTRA USING TWO-CHANNEL COMPLEX MAXIMUM ENTROPY (AUTOREGRESSIVE) SPECTRAL ANALYSIS[J]. Journal of Electronics & Information Technology, 1999, 21(4): 461-466.
Citation:
Wang Chengyi, Wang Hongyu. ESTIMATION OF CYCLIC SPECTRA USING TWO-CHANNEL COMPLEX MAXIMUM ENTROPY (AUTOREGRESSIVE) SPECTRAL ANALYSIS[J]. Journal of Electronics & Information Technology, 1999, 21(4): 461-466.
The main methods for estimation of cyclic spectra for cyclostationary processes are temporally smoothed cyclic periodogram and spectrally smoothed cyclic periodogram. In case of short record length, both methods have low resolution and reliability. This paper uses two-channel complex maximum entropy (autoregressive) spectral analysis method to estimate cyclic spectra. Fine performances such as resolution and reliability can be obtained with this method.
Gardner W A. The spectral correlation theory of cyclostationary time-series. Signal Processing [EURASIP], 1986, 11(1): 13-36.[2]Gardner W A. Introduction to Random Processes with Applications to Signals and Systems. Second Edition, NY: McGraw-Hill Inc, 1990, chapter 12.[3]Gardner W A. Measurement of spectral correlation. IEEE Tans. on ASSP, 1986, ASSP-34(5): 1111-1123.[4]杨叔子,吴雅,等.时间序列分析的工程应用.武汉:华中理工大学出版社,1992, 12章.[5]Otto Neall Strand. Multichannel complex maximum entropy (autoregressive) spectral analysis. IEEE Trans. on Automatic Control, 1977, AC-22(4): 634-640.